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Abstract With advances in broadcasting technologies, people are now able to watch
videos on devices such as televisions, computers, and mobile phones. Scalable video
provides video bitstreams of different size under different transmission bandwidths.
In this paper, a semantic scalability scheme with four levels is proposed, and tennis
videos are used as examples in experiments to test the scheme. Rather than detecting
shot categories to determine suitable scaling options for Scalable Video Coding
(SVC) as in previous studies, the proposed method analyzes a video, transmits video
content according to semantic priority, and reintegrates the extracted contents in
the receiver. The purpose of the lower bitstream size in the proposed method is to
discard video content of low semantic importance instead of decreasing the video
quality to reduce the video bitstream. The experimental results show that visual
quality is still maintained in our method despite reducing the bitstream size. Further,
in a user study, we show that evaluators identify the visual quality as more acceptable
and the video information as clearer than those of SVC. Finally, we suggest that the
proposed scalability scheme in the semantic domain, which provides a new dimension
for scaling videos, can be extended to various video categories.
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1 Introduction

With improvements in video resolution and quality, the bitstream size of videos has
dramatically increased. Given the advances in broadcasting technologies, people are
now able to watch videos from devices including televisions, computers, and mobile
phones. However, they cannot yet enjoy high-quality videos everywhere because of
limitations in the transmission bandwidth.

To provide video bitstreams of lower size, Scalable Video Coding (SVC)—the
scalable extension of Advance Video Coding (AVC) [12]—is the current standard
for video compression under different transmission bandwidths. SVC provides vari-
able bitstream sizes by reducing the video resolution (spatial domain), decreasing
the number of video frames (temporal domain), and increasing the quantization
parameters (SNR domain). However, the viewing quality under a lower bitstream
size is often seriously compromised and unacceptable to viewers. To improve the
viewing quality of videos compressed by SVC, Thang et al. [14] exhaustively reviewed
previous studies and pointed out a number of potential solutions to these problems.
Among these studies, some have sought an optimized way to discard enhancement
layers of different scalability-types to maintain video quality. For example, Wang
et al. [15] proposed a general classification-based prediction framework for selecting
the most suitable adaptation based on subjective quality evaluations—the first
attempt to apply domain-specific knowledge to construct distinct video categories
sharing similar scalable operations. Akyol et al. [2] subsequently determined the
weights of this objective function for different content types and bitrates using a
training procedure with subjective evaluations. Unlike the approaches of bitstream
reduction in SVC, Tang et al. [13] presented a content-adaptive system for streaming
goal events in soccer videos over a network with low bandwidth limitations. Instead
of low-quality videos, panoramic field images were used to present the events under a
lower bandwidth. However, the excitement of the games was also reduced because of
the presentation of still images. In addition, Wikstrand and Eriksson [16] employed
animations to represent football videos on mobile phones. This interesting concept
to reduce the bitstream size should be extended to provide more scalable options.

Figure 1a shows the conventional SVC scheme. Previous studies detected video
categories and applied different compression schemes to different video categories.
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Fig. 1 a Conventional scheme of scalable video coding. Previous studies proposed methods for
Shot Category Detection to determine suitable scaling options for SVC. b The proposed semantic
scalability scheme. A video clip is analyzed and labeled as belonging to a particular shot category,
after which foreground objects and background scenes are extracted. These extracted video materials
are transmitted in order of semantic importance and reintegrated in the receiver
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For instance, Wang et al. [15] classified videos into three categories based on content
complexity and concluded that more complex videos require more bits for spatial
details rather than a higher frame rate. Akyol et al. [2] employed soccer videos as
examples and classified video shots into four types according to the distance of the
shot and the type of motion, after which each shot type was coded with the best
scaling option. Note that these previous studies proposed functions to determine
suitable scaling options such as spatial, temporal, and SNR scalabilities for different
video types and bitrate constraints.

In this paper, we propose a semantic scalability scheme to provide four different
levels of scalable videos that preserve visual quality under low video bitrates. To the
best of our knowledge, the proposed scalability scheme in the semantic domain is
different from schemes proposed in previous studies and highlights a new dimension
for scaling videos. Figure 1b shows the processing scheme for semantic scalability.
Contrary to scaling the bitstream sizes in the spatial, temporal, and SNR domains, the
proposed scalability scheme reduces bitrates by discarding video content in order of
priority of semantic importance—a concept which we refer to as semantic scalability.

The process of video annotation and extraction is a key step to implement
semantic scalability. First, this process builds background scenes, analyzes shot
categories, segments foreground objects, and extracts video information. For some
video clips, background scenes occupy a large area of the frame for several seconds.
Repeatedly appearing background scenes, which usually comprise a large proportion
of a video bitstream, can be recognized as redundant information in video coding.
Therefore, the first level of the semantic scalability scheme re-uses background
scenes in video coding. Next, different clip categories contain different amounts of
semantic information, and different foreground objects also present different degrees
of semantic importance. Thus, the second and third levels of semantic scalability
discard video clips containing less information in the video transmission and fore-
ground objects with less semantic importance, respectively. To further reduce the
transmission bitrate, the fourth level replaces video frames with animations.

The main contributions of this paper are as follows.

• Unlike scaling the bitstream sizes in the spatial, temporal, and SNR domains, the
proposed scalability scheme reduces bitrates by discarding video content in order
of priority of semantic importance. The results show that despite effectively
reducing video bitrates, subjective evaluations reveal that in watching a video,
visual quality is better and understanding is clearer than for SVC. Scalability in
semantic domain can be seen as a fourth dimension of scalable video coding.

• The nature of semantic scalability is to preserve video content with higher
subjective importance under bitrate reduction. Therefore, a key step in the
transmission scheme is video analysis, which labels the importance of each
clip and object in a video. A corresponding process to reintegrate these clips
and objects is required in the receiver. We propose a transmission scheme
that includes video analysis, a compression scheme, and video rendering to
implement semantic scalability (Fig. 1b).

Several tennis videos are used as examples to demonstrate the semantic scalability
scheme. In addition, the concept of semantic scalability is extended to home videos
or other sports videos. The paper is organized as follows. Section 2 introduces the
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Fig. 2 Video Unit representing a single service-play-stop video clip in a tennis match

methods of video analysis and video rendering. Details of the semantic scalability
scheme are presented in Section 3, and experimental results are presented in
Section 4. Finally, we offer conclusions and extensions of this work.

2 Video analysis and rendering

2.1 Video analysis

The video of a game (e.g., a tennis match) is usually several hours long. For a long
video, partitioning it into shorter clips can reduce the difficulties of video analysis.
We have observed that videos of tennis matches (hereafter tennis videos) repeat
the iteration: player serving, game running, and game on hold. As shown in Fig. 2, a
single service-play-stop video clip can be regarded as a Video Unit. Each Video Unit,
which begins with a play clip1 and ends before the next clip, usually represents an
event in tennis videos. Given such regularity, the structure of a video can be analyzed
by finding all play clips within it. In previous studies of clip recognition, Lai and
Chien proposed the method of template matching by color histograms [5]; Han et al.
recognized play clips by calculating the number of white pixels in video frames [3].
Both methods could precisely detect the play clips and decompose the entire video
into Video Units.

For each Video Unit, the play clip contains a vast amount of game information
such as ball and player trajectories. The primary task of video analysis is to extract
this information from the play clips. Segmentation of the ball and players in tennis
videos is difficult because the possible camera motions during a match are panning,
tilting, and zooming. Lai et al. proposed a method of projecting the video frames onto
a sprite plane [7]. This method reconstructed the background scene and effectively
segmented the foreground objects, as shown in Fig. 3. To extract players from
foreground objects, Han et al. proposed a method using a mean-shift tracking
algorithm and blob separation under occlusion of multiple objects [3]. To retrieve
the ball from foreground objects, Lai and Chien proposed a method using a Kalman-
based motion model to predict and complete ball trajectories [6].

1Rallies constitute the play clips in tennis videos, as shown in Fig. 2.
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Fig. 3 Process flow for extracting foreground objects. Video frames are projected to the sprite plane,
the background scene used to segment foreground objects

2.2 Video rendering

The proposed method of video rendering reintegrates the video content extracted
in Section 2.1. As the illustration in Fig. 4 shows, the sprite plane, also referred to
as the background scene, can be processed by inserting text or advertisements. By
modifying the extrinsic parameters of the camera in (1), a virtual camera can be
rendered with panning, titling, and zooming.
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where (x′, y′) are the coordinates in the sprite plane, and (x′′/w′′, y′′/w′′) are the
coordinates in the rendering view. Finally, the foreground objects, whose number
may depend on the users request, are pasted on the viewing angle.

Unlike videos in the conventional transmission scheme, the rendered video is
composed of several layers including the background court, players, ball, ball boys,
and moving audiences. By editing the layered contents, a customized video is
rendered and highlight replays can be generated by reintegrating these contents. For
example, with the extracted player trajectories, the virtual camera can focus on a
specific player and generate a replay of the viewing angle focusing on the player.
Furthermore, video rendering can also implement semantic scalability. For instance,
size reduction of a video bitstream can be achieved by decreasing the number of
layered contents transmitted. The details of bitstream reduction are described in
Section 3.
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Fig. 4 Three steps of the proposed video rendering: sprite-image processing, viewing-angle render-
ing, and foreground-object pasting
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3 Semantic scalability

To reduce the bitstream size and maintain visual quality, we propose four approaches
to discard video content in order of priority of semantic importance. In other
words, a smaller bitstream size is achieved by reducing the amount of video content
transmitted. The proposed semantic scalability scheme has four levels. These are
shown in Fig. 5.

3.1 Video background re-use

It can be observed that a view of the tennis court, which covers a large percentage
of the area of play clips, abruptly appears in a tennis video. If the background court
can be re-used in video transmission, the bitstream size can be reduced. Thus, the
bitstream reduction in Level 1 of Fig. 5 is achieved by re-using the background scene.
It should be noted that the background court and foreground objects of the play
clips are individually transmitted, and the former is transmitted only once and re-
used in subsequent videos. Although the background court is abridged in subsequent
transmissions, the rendered video in Level 1 is still identical to the original tennis
video. Thus, the bitstream reduction in Level 1 is achieved by reducing redundant
transmission of the background court. In addition, non-play clips are transmitted in
a single layer without further processing because the efficiency of background re-use
is insufficient.

3.2 Discarding of video clips

To reduce the bitstream size in Level 2, video clips with less semantic importance
are discarded. With regard to semantic importance, play clips have more important

Fig. 5 Four levels of semantic
scalability. The bitstream size
in each level is reduced by
decreasing the amount of
video content
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game information than non-play clips, which are usually event replays or close-up
views of players. Furthermore, the average bitstream sizes for non-play clips are
greater than those for play clips because of the abrupt changes in scene. Given
these considerations, non-play clips are discarded and the total bitstream size is
greatly reduced. To fill the absence of non-play clips, highlights from the play
clips are played. The highlights can be rendered from play clips that show players
running long distances to reach the ball. This is because a situation in which a
player forces his/her opponent to run a long distance to return the ball is inherently
exciting.

3.3 Discarding of video content

To further reduce the bitstream size in Level 3, certain video content in play clips
is discarded. While watching tennis videos, people mostly pay most attention to the
players and little to the referee, ball boys, people in the audience, etc. However,
the latter non-essential components take up considerable transmission bandwidth.
Therefore, they are discarded to reduce the bitstream size, and only the ball and
players are transmitted. To fill in the empty non-play time, highlight replays similar
to those described in Level 2 can be rendered. An interesting feature of Level 3 is
that all objects, except for the ball and players, are static in the video.

3.4 Video in animation

In order to reduce the bitstream size in Level 4, animation is employed to represent
the tennis video. The reduction in Level 3 is further extended to transmit only the
positions of the ball and players. Level 4 is proposed for extremely low transmission
bandwidths. Although lacking in detailed game information such as player postures,
the coordinates of the ball and players can be used to roughly represent the state
of the game. During the non-play clips in the original video, statistics such as player
trajectories and hit positions can be shown. With ball and player trajectories, the
rendered computer graphics can provide users with new experiences of watching
tennis videos [8].

4 Experimental results

Different tennis videos in Table 1 are used as test videos. Video demonstrations of
experimental results are available on a website [10].

Table 1 Several tennis videos used in the experiments

Game Video resolution

Video 1 Final of 2007 Australia open men’s single 720 × 480
Video 2 Semi final of 2008 US open men’s single 720 × 480
Video 3 Semi final of 2009 French open men’s single 720 × 480
Video 4 Semi final of 2009 Wimbledon open women’s single 720 × 480
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4.1 Bitstream size at each level

For compression of the background court in Level 1, the sprite plane is encoded
by Lossless JPEG [11] to preserve better image quality and achieve compression
rates of 6.5 times the average rates. In other words, a sprite image with a resolution
of 1080 × 720 in RGB format has a file size of 362 KB. It should be noted that as
the sprite image is re-used in the video, it only needs to be transmitted once at the
beginning, as shown by the red bin in Fig. 6. For compression of foreground objects,
all are encoded by the main profile of the H.264 video encoder (JM15) [12] with
average bitrates of 261 kilobits per second (Kbps). Non-play clips are also encoded
by the main profile of the H.264 video encoder (JM15) with average bitrates of 1230
Kbps. We see that background re-use in play clips clearly has lower bitrates than in
non-play clips.

For compression of bitrates in Level 2, the background court and foreground
objects of play clips are individually encoded as in Level 1. To discard non-play clips,
highlight replays that do not require further data transmission are rendered from the
play clips. Thus, bitrates in the time interval containing non-play clips in the original
tennis video are zero, although the buffer to store the contents of play clips poses an
additional cost. We see that by discarding non-play clips, the bitrates are dramatically
reduced compared to Level 1. By replacing non-play clips with highlight replays,
there is less visual loss in watching the tennis videos.

For compression of bitrates in Level 3, the background court and foreground
objects are individually encoded as in Level 2, but with the difference that the latter
only include the ball and players. The average bitrates of the foreground objects are
only 144 Kbps about the half the size of those in Level 2. By discarding non-play
clips, the bitrates of the highlight replays are zero as in Level 2. We have observed
that the viewing quality in Level 3 is almost identical to that in Level 2 even though
non-attractive foreground objects are discarded.

Fig. 6 Average bitrates for
each scalable level. The red bin
at the beginning (far left) is the
bitrate for the sprite image,
and the blue bins are the
average bitrates for video
content

Video Unit
Play Clip Non-play Clips

Content
Scalable

Level 1
Bitrates

Level 3
Bitrates

Level 2
Bitrates

Level 4
Bitrates

261 Kbps 1230 Kbps

261 Kbps 0 bps

144 Kbps 0 bps

5.76 Kbps 0 bps
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For compression of bitrates in Level 4, only the position coordinates of the ball
and players are transmitted. Instead of video frames, ball and player positions are
displayed on the court map. The data size for these coordinates is only 5.76 Kbps. The
statistics presented during the time window emptied of non-play clips and replaced
with highlights is retrieved from the coordinates of the play clips. The total bitrates
in Level 4 are extremely low relative to those in other levels.

Experimental results show that the proposed semantic scalability scheme reduces
the video bitrates by discarding video content in order of priority of semantic
importance. Furthermore, the semantic scalability scheme also has the property
of adaptive transmission in that the bitstream size can immediately be adjusted
according to the transmission bandwidth. For example, viewers can watch the tennis
video in Level 2 while receiving some non-play clips when the bandwidth is available.

4.2 Comparison of bitstream size and visual quality

The comparisons of bitstream size and visual quality between the proposed semantic
scalability and SVC schemes are shown in Fig. 7. For SVC in the spatial domain,
a lower bitstream size is achieved by reducing the video resolution, although visual

SVC in 
Spatial Domain 

SVC in 
Temporal Domain 

SVC in 
SNR Domain 

Proposed Scalability 
in Semantic Domain 

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 518 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 518 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 518 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 261 Kbps

Video resolution: 360x240
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 267 Kbps

Video resolution: 720x480
Frame rate: 7.5 fps
QP: 30
Objects: All
Bitrate: 267 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 40
Objects: All
Bitrate: 166 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: Players and ball
Bitrate: 144 Kbps

Video resolution: 180x120
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 134 Kbps

Video resolution: 720x480
Frame rate: 2 fps
QP: 30
Objects: All
Bitrate: 188 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 50
Objects: All
Bitrate: 52 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP:
Objects: Animation
Bitrate: 5.76 Kbps

Fig. 7 Comparisons of bitstream size and visual quality for SVC in the spatial, temporal, and SNR
domains, as well as for the proposed semantic scalability scheme
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Table 2 Mean opinion score (MOS) and standard deviation (SD) of compressed videos in the
evaluation of visual quality

SVC in spatial domain SVC in temporal domain SVC in SNR domain Proposed scalability
in semantic domain

Resolution: 720 × 480 Frame rate: 30 fps QP: 30 Level 1
Bitrate: 1020 Kbps Bitrate: 1020 Kbps Bitrate: 1020 Kbps Bitrate: 895 Kbps
MOS: 5 MOS: 5 MOS: 5 MOS: 5
SD: 0 SD: 0 SD: 0 SD: 0

Resolution: 360 × 240 Frame rate: 7.5 fps QP: 40 Level 2
Bitrate: 526 Kbps Bitrate: 525 Kbps Bitrate: 327 Kbps Bitrate: 117 Kbps
MOS: 3.32 MOS: 3.64 MOS: 2.84 MOS: 4.76
SD: 0.45 SD: 0.78 SD: 0.50 SD: 0.12

Resolution: 180 × 120 Frame rate: 2 fps QP: 50 Level 3
Bitrate: 264 Kbps Bitrate: 370 Kbps Bitrate: 102 Kbps Bitrate: 64 Kbps
MOS: 1.98 MOS: 2.32 MOS: 1.38 MOS: 4.78
SD: 0.74 SD: 0.66 SD: 0.78 SD: 0.22

quality is reduced because of the smaller display regions. For SVC in the temporal
domain, a lower bitstream size is achieved by reducing the frame rate; however, visual
quality decreases as a result of discontinuous camera motion and player postures.
For SVC in the SNR domain, a lower bitstream size is achieved by increasing the
quantization parameters (QP); nevertheless, the resulting video is blurred and visual
quality is reduced. For the proposed scalability scheme in the semantic domain,
a lower bitstream size is achieved by discarding the contents in order of priority
of semantic importance without reducing visual quality. Note that the ball boy is
eliminated in the second level of scalability in Fig. 7, although viewers may not notice
the difference. Four demo videos are available2 [10], which show detailed visuals of
these comparisons.

To evaluate the visual quality of these compressed videos, we also invited twenty
subjects, all of whom were graduate students. There are several test methods to eval-
uate video quality. We employed the Double Stimulus Impairment Scale Method,
giving the subject two chances to examine the reference and test sequences prior to
providing a response. For example, the subject was required to watch the reference
video (with the highest bitrate) for 10 s, rest for 5 s, watch the compressed video
for 10 s, and then repeat this procedure. The subjects were instructed to compare
the test sequence to the reference sequence and judge the visual quality based on
a five point scale, i.e., 5, imperceptible; 4, perceptible but not annoying; 3, slightly
annoying; 2, annoying; and 1, very annoying. The mean opinion scores (MOS) and
standard deviations (SD) for each of the compressed videos are shown in Table 2, the
results of which are also illustrated in Fig. 8. We see that the visual quality of videos
compressed by SVC methods was seriously reduced at lower bitrates. In particular,
videos with bitrates under 440 Kbps compressed in the spatial and temporal domains
made subjects feel slightly annoyed; this annoyance became unacceptable at bitrates
under 250 Kbps. In contrast, the visual quality of the proposed method is still
preserved and does not decrease as the bitrate declines (Fig. 7). This is because the

2http://media.ee.ntu.edu.tw/larry/scalable/
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Fig. 8 Mean opinion score
(MOS) and standard deviation
(SD) of compressed videos in
the evaluation of visual quality
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reduced bitrates are due to elimination of information, as in the re-use of background
scenes and the discarding of video clips and content.

4.3 Evaluation of video understanding

The same subjects mentioned in Section 4.2 were invited to test their understanding
of the game after watching compressed videos. We also employed the Double
Stimulus Impairment Scale Method with the same settings as in Section 4.2, and
asked the subjects to give scores based on a five point scale, i.e., 5, imperceptible; 4,
perceptible but not annoying; 3, slightly annoying; 2, annoying; and 1, very annoying.
The MOS and SD for the understanding of each compressed video are shown in
Table 3. Note that results of Level 4 in the proposed method are only listed in Table 3
but not in Table 2. This is because the visual quality of the animated video in Level
4 is difficult to compare with that of non-animated videos. Figure 9 illustrates the
results in Table 3. We see that it is more difficult to understand videos compressed
by SVC methods at lower bitrates. This is particularly true in the case where the ball

Table 3 Mean opinion score (MOS) and standard deviation (SD) of compressed videos in the
evaluation of understanding

SVC in spatial domain SVC in temporal domain SVC in SNR domain Proposed scalability
in semantic domain

Resolution: 720 × 480 Frame rate: 30 fps QP: 30 Level 1
Bitrate: 1020 Kbps Bitrate: 1020 Kbps Bitrate: 1020 Kbps Bitrate: 895 Kbps
MOS: 5 MOS: 5 MOS: 5 MOS: 5
SD: 0 SD: 0 SD: 0 SD: 0

Resolution: 360 × 240 Frame rate: 7.5 fps QP: 40 Level 2
Bitrate: 526 Kbps Bitrate: 525 Kbps Bitrate: 327 Kbps Bitrate: 117 Kbps
MOS: 3.98 MOS: 4.33 MOS: 2.89 MOS: 4.59
SD: 0.55 SD: 0.44 SD: 0.53 SD: 0.35

Resolution: 180 × 120 Frame rate: 2 fps QP: 50 Level 3
Bitrate: 264 Kbps Bitrate: 370 Kbps Bitrate: 102 Kbps Bitrate: 64 Kbps
MOS: 2.62 MOS: 3.76 MOS: 1.97 MOS: 4.52
SD: 0.82 SD: 0.67 SD: 0.69 SD: 0.20

Level 4
Bitrate: 4 Kbps
MOS: 2.78
SD: 1.03
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Fig. 9 Mean opinion score
(MOS) and standard deviation
(SD) of compressed videos in
the evaluation of
understanding

Spatial
Temporal
SNR
Proposed

Bitrate (Kbps) 

MOS

0

1

2

3

4

5

0 220 440 660 880 1100

disappears at Levels 2 and 3 of the SNR domain because of high QP. In a tennis
video, the ball trajectory contains important semantic information, and numerous
subjects feel that it is difficult to understand the game without it. Furthermore, in
Level 3 of the SNR domain, players were severely blurred and viewers had trouble
recognizing a players posture. In contrast, the MOSs for the proposed method only
slightly declined as the bitrate decreased because video content with higher semantic
importance was still preserved. The results also revealed that the players and ball
contain a considerable amount of game information, and that viewers pay most
attention to these when watching a tennis video.

4.4 Total user experience

We next designed a subjective test to evaluate the total experience for evaluators: ten
with a habit of watching tennis videos and ten others without such a habit. First, the
evaluators watched the sequences under bitstream reduction by SVC and then under
bitstream reduction by semantic scalability. Subsequently, the evaluators compared
the visual quality of the sequences between SVC and semantic scalability under
bitstream reduction. Three questions were designed to evaluate visual quality, and
evaluators gave a score of 1 to 9 depending on their degree of satisfaction, i.e., 1,
very unsatisfied; 3, unsatisfied; 5, no difference; 7, satisfied; and 9, very satisfied. The
questions were as follows:

Q.1 Do you think the visual quality of videos is more acceptable and game
information is clearer under bitstream reduction by semantic scalability?

Fig. 10 Results of subjective
evaluation. Blue and green
bars are the average scores for
evaluators with and without a
habit of watching tennis,
respectively. The error bars
show standard deviations

0

2.0

4.0

6.0

8.0

10.0

Q.1 Q.2 Q.3
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Q.2 Do you think semantic scalability is a more practical solution in video broad-
casting?

Q.3 Are you willing to watch tennis videos with semantic scalability?

The average scores for the questions, shown in Fig. 10, are all higher than 6 in
spite of evaluators with or without the habit of watching tennis. From these results,
evaluators identified with the statement that compared to SVC, the visual quality of
semantic scalability is more acceptable and game information is clearer. In addition,
they were willing to watch tennis videos with semantic scalability functions, and
identified with the statement that the proposed semantic scalability scheme is a more
practical solution than SVC in video broadcasting. Another interesting phenomenon
is that the scores from evaluators with tennis-viewing habits are higher than those
from evaluators without such habits. It appears that people who often watch tennis
identify closely with the contributions of semantic scalability and prefer to have these
functions.

5 Conclusions and extensions

To provide videos with variable bitstream sizes, we propose four levels of scalability
in the semantic domain. Without compromising video quality to reduce the bitrates, a
lower bitstream size is achieved by discarding video content of low semantic impor-
tance. Experimental results show that video bitrates can be effectively reduced by
re-using the background scenes, discarding some video clips, reducing the amount of
foreground objects, and replacing the video with animation, respectively. Subjective
evaluations reveal that the visual quality of videos compressed by our proposed
method is better than that of videos compressed by SVC at low bitrates. In addition,
understanding is clearer when watching videos compressed by the proposed method
than those compressed by SVC at low bitrates. To the best of our knowledge, the
proposed scalability scheme in the semantic domain is different from previously
studied schemes and provides a new dimension for scalable video coding.

Although we only used tennis videos as examples in this paper, semantic scala-
bility can be extended to further video categories such as home videos and football
videos. To extend the concept of a Video Unit to such videos, play clips (in tennis)
can be replaced with clips attracting more visual attention [9] and shoot clips,
respectively. Video analysis is a key step to achieve semantic scalability; the process
of foreground segmentation by projecting video frames to the sprite plane can be
applied to various video categories [7]. To extract video information, camera motion
can be used as a clue to annotate home videos [1], and previous methods of extracting
football and player trajectories are available [4, 17]. With video information and
content thus extracted, the semantic scalability scheme can be applied to various
video categories.
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