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ABSTRACT
Tennis Real Play (TRP) is an interactive tennis game sys-
tem constructed with models extracted from videos of real
matches. The key techniques proposed for TRP include
player modeling and video-based player/court rendering. For
player model creation, we propose a database normalization
process and a behavioral transition model of tennis players,
which might be a good alternative for motion capture in
the conventional video games. For player/court rendering,
we propose a framework for rendering vivid game charac-
ters and providing the real-time ability. We can say that
image-based rendering leads to a more interactive and re-
alistic rendering. Experiments show that video games with
vivid viewing e↵ects and characteristic players can be gen-
erated from match videos without much user intervention.
Because the player model can adequately record the ability
and condition of a player in the real world, it can then be
used to roughly predict the results of real tennis matches in
the next days. The results of a user study reveal that sub-
jects like the increased interaction, immersive experience,
and enjoyment from playing TRP.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Statistical database; I.4.9 [Image Processing and Com-
puter Vision]: Applications

General Terms
Algorithm, Design, Experimentation

1. INTRODUCTION
In recent years, a number of interactive videos have been

proposed on the Internet. For example, there are now sev-
eral such videos of magic shows on YouTube. These videos
are unique in that users not only watch the videos but also
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participate in the show to guess the answers to magic tricks.
It is our opinion that such interactive videos can engage user
interest, and that the concept of interactive videos can be
further extended.

In this paper, we propose Tennis Real Play (TRP), an in-
teractive tennis game constructed from videos of real matches.
TRP is inspired by advances in video analysis/annotation,
video-based rendering, and interactive sports games. Previ-
ous relevant work is reviewed below.

Video Analysis/Annotation, like event annotation and
content segmentation, is a popular and important topic be-
cause of the dramatic increase in the number of videos.
Many previous studies on this issue have been published.
For extraction of sport videos, Wang et al. [25] proposed
a method to analyze video structure and automatically re-
play highlights of soccer videos. Wang and Parameswaran
[26] analyzed the ball trajectories in tennis matches to de-
tect player tactics for video annotation, and Zhu et al. [28]
proposed recognition of player actions in tennis videos for
event annotation. For content segmentation of tennis videos,
Lai et al. [13] proposed methods for separating and re-
integrating content to enrich videos of tennis matches. By
applying these previously studied methods, a large number
of videos can be organized so that users can immediately
find highlights in a long video.

Video-based Rendering, which can be described as an
extension of image-based rendering, is a method to rearrange
video frames to create a new video. In studies of video-based
rendering, Schodl et al. [23] proposed Video Textures to au-
tomatically cut videos into clips and re-loop them to create
continuous animations. Efros et al. [2] proposed methods
to recognize and classify player actions in football videos.
Using such clips of player actions, new actions can be syn-
thesized. Inamoto and Saito [9] rendered a free-view football
game from videos from multiple cameras, with the free-view
synthesis yielding a fresh viewing experience. Lai et al. [12]
proposed Tennis Video 2.0, which rendered multiple play-
ers in continuous motion at the same time to create a more
interesting viewing experience.

Interactive Sports Games are a popular form of enter-
tainment. In particular, the interactive tennis game in Wii
Sports 1 is one of the most well-known among such games.
Innovative user interfaces such as those of Wiimote and Wii
Fit provide a more realistic gaming experience and changes
the way people play games. Not surprisingly, Wii has suc-
cessfully engaged users throughout the world. In contrast
to the interactivity in Wii, Play Station 3(PS3) places more

1Wii Sports. http://wiisports.nintendo.com/
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Figure 1: The user interface consists of four com-
ponents: (a) the main screen of the rendering re-
sult, (b) the coordinates of the players and ball
on XY-axis, (c) the coordinates of the players and
ball on YZ-axis, and (d) motion paths in the player
database.

emphasis on visual quality. Top Spin 3 2 is one of the tennis
games on PS3, and the realistic player postures and light-
ing e↵ects o↵er the user a more vivid viewing experience.
Inspired by both games, one of the aims of this study is
to build a tennis game that o↵ers an interactive experience
similar to that of Wii along with vivid video texture.

TRP is an interactive tennis game system constructed
with models extracted from videos of real tennis matches.
As shown in the game frame in Figure 1(a), the textures of
the players and the background court are extracted from
real videos of matches, and player postures are immedi-
ately rendered according to the user’s control. To imple-
ment TRP, we propose a system framework consisting of
player model creation and player rendering, and a video
with system overview is available on the website3. When
creating a player model, projection to fiducial coordinates
is proposed to normalize object sizes and the motion tra-
jectories of segmented players. Next, a 4-state-transition
model is proposed to model tennis players’ behaviors. For
player rendering, we propose methods to select suitable clips
(moving/hit/standby) from the database. The most inter-
esting and unique feature of our player rendering is that
the movement abilities and hitting strength of a rendered
player will depend on these clips and statistics in the videos
of real matches. Subsequently, we construct a 3D model of
the tennis court from the background image and build the
game system on this model. As shown in Figures 1(b) and
(c), the player’s state is recorded in 3D coordinates and the
game frame is rendered with a virtual camera. By combin-
ing the 3D model with techniques in video-based rendering,
the proposed system can render game frames in di↵erent
viewing angles. The contributions of this paper are listed
below.

• To the best of our knowledge, this is the first work to
integrate video-based rendering and interactive sports
game, and all the rendering characters perform with
the characteristics of the players in the real world. We
can say that image-based rendering leads to a more
interactive and realistic rendering.

2Top Spin3. http://www.topspin3thegame.com/
3Demo videos. https://sites.google.com/site/juihsinlai/trp

• Conventional video games utilize expensive motion cap-
ture systems to build the player database which re-
sults in rather fixed action sets. Moreover, the player
model cannot be updated often. The presented ap-
proach might be a good alternative for these methods.
The users can even play with new players recorded in
the sport video or their friends as the player in the
home-made video.

• The game results of TRP can reflect the match results
in real world because the game characters can ade-
quately record the abilities and conditions of players
in the match video. This property can then be used
to roughly predict the results of real tennis matches in
the next days.

• We provide viewers a new way to enjoy sports videos;
viewers not only enjoy the match by watching videos
but also have more immersive experience from playing
match videos. In other words, a new match content
can be integrated to the game as soon as a new match
video is available without much user intervention.

The remainder of this paper is structured as follows. Sec-
tion 2 describes in detail the generation of the player database,
extraction of statistics, and player modeling. Clip selection,
smoothing transitions, and system integration for player ren-
dering are described in Section 3. Section 4 presents exper-
imental results along with discussions. Finally, the major
findings of the paper are summarized in Section 5.

2. PLAYER MODEL
Player model creation is a key component in TRP be-

cause player behaviors in the game including hitting pref-
erence and movement characteristics are controlled by the
model. Each player has a unique player model in di↵erent
tennis games. Consequently, the essence of this study is the
creation of player models from videos of real matches.

2.1 Player Database
The first step in building the player database is to segment

the player from the videos. The possible camera motions
in tennis videos—panning, titling, and zooming—make the
segmentation process quite di�cult. Several previous stud-
ies have examined this problem. Lai et al. [14] projected
video frames onto a sprite plane for background image gen-
eration, which was used for the segmentation of foreground
objects. Han et al. [5] proposed a camera calibration mod-
ule that employed the geometric layout in the form of a
court model, which could then be used for player segmen-
tation. The player database not only includes segmentation
masks but also records where a player stands in each video
frame. Nevertheless, the scale of each mask and position in
the player database changes as a result of camera zooming
or panning. Therefore, a procedure is required to normal-
ize the database. For this purpose, we propose a fiducial
coordinate system upon which all database information is
projected. The fiducial plane is the tennis court in a fiducial
coordinate system from bird’s eye view, as shown in Figure
2.

Next, we assume that the bottom coordinates of the player
mask (P

x

, P
y

) specify the position of the feet on the court.

The normalized coordinates are presented as (P
0
x

, P
0
y

) by pro-
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The player in video frame Transfer to fiducial coordinate

Figure 2: Illustration of player position and size nor-
malization.

jecting (P
x

, P
y

) onto the fiducial coordinate system accord-
ing to the following equations.
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+ 1
, (2)

where m0 to m7 are the parameters of homography pro-
jection. As players are extracted from video frames, the
sizes of the segmented players will be influenced by camera
parameters and a player’s position on the court. There-
fore, two factors are considered to normalize player size: the
projection parameters of the camera and the player’s court
position. The zooming rate parameters of the players can
be estimated by calculating the deviation of G

x

(x, y) and
G

y

(x, y) with respect to the horizontal and vertical zooming
factors on the coordinates (P

x

, P
y

), respectively. Therefore,
the normalized player size Z(P

x

, P
y

) is obtained by multiply-
ing the horizontal and vertical zooming factors, as expressed
in the following equation.
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y
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x
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y

)
@P

x

@G
y

(P
x

, P
y

)
@P

y

. (3)

As shown in Figure 2, the normalized player position and
size can be calculated with perspective parameters and the
player’s position.

2.2 Hit Statistics
After building the database, it is necessary to extract the

statistics of a player’s characteristics in videos of their ten-
nis matches. Determining a player’s positions at the time
of hitting is the key step in extracting this information be-
cause each hit strength and direction can be detected by the
connection of positions at the time of hitting. To detect the
time at which the player hits the ball, audio detection and
ball trajectory analysis are applied. On the one hand, the
hit sound is detected e�ciently by the peak amplitude in an
audio signal when the background noise is low. However,
the hit sound is occasionally masked by an audience’s cheer
or a broadcaster’s voice. To detect the hit time under loud
background noise, information on ball trajectories is used
instead of audio signals. According to the method of detect-
ing the tennis ball trajectory in [13], the state of the ball
can be modeled and used for hit time detection.

After their strengths and directions are detected, the hits
must be further categorized. The hit categories include fore-
hand volley, backhand volley, forehand stroke, backhand

MoveHit

Serve

Standby

Figure 3: Proposed four-state-transition model for
tennis player behaviors.

stroke, and drop shot. However, it is di�cult to identify
each hit category from videos with a single camera view.
To simplify the identification process, two hit categories,
forehand and backhand, are first labeled by the program.
Several previous studies have investigated this problem. For
example, Roh et al. [21] proposed a curvature scale space
(CSS) to describe the characteristic shape features of the
extracted players and used it to detect hit categories. How-
ever, we find that features in CSS cannot accurately identify
hit categories in our experiments because players’ shapes are
dissimilar, and it is di�cult to find common features in the
same hit category. Using the methods in [28], we calcu-
late and sum the values of optical flow on the right and left
sides of the player. If the optical flow on the right side of
the player is larger than that on the left side, the hit pos-
ture is regarded as a forehand. Otherwise, the hit posture is
regarded as a backhand. The strength of forehand and back-
hand hits in various directions will be considered in Section
3.1.2.

Once forehand and backhand hits are categorized, we use
the player position as a clue to identify volleys and strokes.
The posture is identified as a volley if the player’s position
is close to the net and a stroke if player’s position is far from
the net. Although these assumptions are not always correct,
most of the time they are true. In addition, the classification
rates between stroke and volley can be improved by more
information from di↵erent viewing angles of cameras. In
sum, after detecting the hit time and identifying the hit
category, each hit posture is classified as a forehand stroke,
backhand stroke, forehand volley, or backhand volley.

2.3 Behavior Model
Even after the player database has been constructed and

the hit statistics generated, it remains di�cult to vividly
render a player’s behavior without a behavior model. In
previous studies of video-based rendering, Schodl and Essa
[22] and Colqui et al. [1] synthesized new video clips by
rearranging frames in the original video sequences. Both
studies presented ingenious schemes to create new motions
by displaying the original video clips in a di↵erent order.
However, most of the objects in their test videos have sim-
pler structures such as those of hamsters, flies, or fish. No
human videos were used because human behaviors are more
complex. For video-based rendering with human motions,
Phillips and Watson [20] introduced template sequences and
performed two forms of data-based action synthesis: “Do
as I Do” and “Do as I Say”. Although the results were
impressive, the system could only synthesize actions based
on templates of existing motion sequences. Furthermore,
Flagg et al. [3] presented photo-realistic animations of hu-
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man actions. By pasting numerous sensors on a human
subject’s body to detect motion, this study overcame many
challenges encountered in synthesizing human actions and
achieved vivid rendering e↵ects. Nevertheless, this approach
is not suitable for the present application.

In our opinion, a model that simulates the behavior of
tennis players is needed. Therefore, we propose the four-
state-transition model shown in Figure 3. The four states
are Serve, Standby, Move, and Hit. The arrows in the
figure represent the allowable state transitions. All the be-
haviors of tennis players during a match can be expressed
by these state transitions. For example, a player may move
right, wait to hit, and then perform a forehand stroke—a
sequence which can be modeled by state transitions from
Move, to Standby, to Hit. In the case of serving, a player
may serve, run to a standby position, wait for the oppo-
nent’s return, run to a hitting position, and then hit—a
sequence which can be modeled as Serve, Move, Standby,
Move, andHit. As in the intra-state transitions for Standby
and Move shown by the dotted lines in Figure 3, the same
state may recur several times in rendering, the associated
details of which are described in Section 3.1. Under this be-
havior model, the player database in Section 2.1 is further
classified into four categories. As noted in Section 2.2, four
di↵erent hitting postures—forehand stroke, forehand volley,
backhand stroke, and backhand volley—are collected in the
Hit category. Subsequently, actions between two hits are
classified in the Move category. Action clips without move-
ment in the Move category are then collected to form the
Standby category.

3. PLAYER RENDERING
In this section, methods of player selection are proposed

in which suitable clips are selected from the database to
render the various motions and postures of players. For
seamless connection between clips, the proposed approaches
can smooth transitions in the player’s shape, color, and mo-
tion. Subsequently, the game system is integrated with the
rendered background court and foreground objects.

3.1 Database Selection
In previous studies focusing on video-based rendering, Schodl

et al. [23] and Schodl and Essa [22] extracted textures of a
video and synthesized new video clips by rearranging frames
in the original video sequences. In both studies, the mea-
sure of similarity for video synthesis is the pixel di↵erence
between two frames. However, the methods in these studies
were not suited for human rendering because the complexity
of human images is higher than that of natural scenes used
in previous studies. In previous studies of video-based ren-
dering in humans, Kitamura et al. [11] used greater numbers
of similarity measures such as motion vectors and contours,
and both studies achieved more vivid visual e↵ects. These
studies should encourage the consideration of more similar-
ity measures for better visual e↵ects in human rendering.
Nevertheless, the challenges are greater in player rendering
because unlike the dedicated human videos from users cap-
tured in [3] and [11], the player database is constructed from
videos of matches. In other words, the database may be in-
complete for some postures, and thus lead to more di�cult
rendering. Therefore, in the proposed method for player
rendering, the first step is to select appropriate player clips.

B

A

A1

A2

Pi,j

D1,ij

D2,ij

(b)Selection result from A to B.(a)Factors of similarity computation.

A

B

Figure 4: (a) Selecting a suitable motion clip to form
a movement path from position A to position B by
computing similarity. (b)Three motion clips forming
a movement path.

3.1.1 Clip Selection for Player Moving
Suppose a motion path is to be rendered from position

A to position B as illustrated in Figure 4(a), and that the
best path is the shortest one (dotted line). Occasionally,
it is di�cult to find a clip from the player database that
fits the dotted line, and multiple moving clips must be con-
nected to form the moving posture. A critical problem is
how to choose suitable moving clips to achieve seamless con-
nections. Suppose there are n moving clips, and moving clip
i, i 2 [1, n], is composed of l

i

frames. P
i,j

is the player
position in frame j of moving clip i in fiducial coordinates,
j 2 [1, l

i

]. All player positions can form the possible move-
ment trajectories such as those shown by the grey lines in
Figure 4(a). The process of moving clip selection is to choose
a motion path [P

i,1, ..., Pi,j

] which connects positions A and
B. Three primary factors should be considered in moving
clip selection: distance D1,ij, distance D2,ij, and index j.

• D1,ij is the distance from position P
i,j

to position B.
The selected moving clip should shorten the distance
to the destination position B. As shown in Figure 4(a),
the shorter the distance D1,ij, the better the motion
path [P

i,1, ..., Pi,j

].

• D2,ij is the distance from position P
i,j

to the shortest
path. The selected moving clip should not be far from
the shortest path. A shorter D2,ij indicates that the
rendered motion path from the selected clip is more
e�cient for player movement.

• A larger j is preferred because longer clips would make
the rendering result smoother. In other words, a smaller
j indicates that many shorter clips may be needed to
render the motion path. This makes the path less
smooth.

Taking these factors into consideration, the decision func-
tion at each position P

i,j

in moving clip selection is formu-
lated as the sum of D1,ij, D2,ij, and j.

MD
ij

= D1,ij +D2,ij � c
m

j, (4)

where c
m

is a weighting coe�cient to balance the e↵ective-
ness of clip length. The moving clip with the minimum value
of MD

ij

is recognized as the most suitable. Occasionally,
the selection procedure is repeated several times and mul-
tiple clips are selected to form the motion path. As the

486



illustration in Figure 4(b) shows, three clips, AA1, A1A2,
and A2B, form the motion path. It should be noted that
the time to move from position A to position B depends on
the player database. In other words, a shorter running time
is needed if the player moves fast in various directions in the
real video, which is recorded in the database as shown in
Figure 1(d). The rendering of player motion based on ex-
tracted clips containing the movement characteristics of the
player in videos of real match is one of the distinguishing
features of TRP.

3.1.2 Clip Selection for Hitting
Unlike moving clip selection, the major factor considered

in clip selection for hitting is the similarity of texture and
shape between the final selected moving clip and the hitting
clip. As the transition example in Figure 5 illustrates, the
primary challenge is how to choose the hitting clip Hit to
connect to the current frame CF

t

in a seamless cascade. A
reasonable assumption for a suitable connection is that the
initial frames in a successive clip should be visually similar
to the current clip. This requires computing the similarity
between frames of the current clip and the initial frames of
clips in the Hit category. HD

i

, the distance between the
initial frame of clip i and the current frame, is defined on
the basis of textural and shape features. It is written as

HD
i

= D
tex,i

+ c
h

D
shape,i

, (5)

D
tex,i

=
X

x

X

y

|Hit
i,1(x, y)� CF

t

(x, y)|2, (6)

where D
tex,i

is the textural similarity between the current
frame CF

t

(x, y) and the initial frame of the successive clip
Hit

i,1(x, y). Note that the positions of the player masks in
these clips are normalized (Section 2.1), and no alignment
process is required in measuring textural similarity. D

shape,i

stands for the shape similarity derived with the Hausdor↵-
distance [7]. c

h

is a weighting coe�cient to balance the e↵ec-
tiveness of shape similarity. The clipHit

i

with the minimum
HD

i

is chosen as the successor clip.
For hitting properties, the hitting strengths are based on

statistics from the player’s performance in real videos. As an
example in Figure 5, the blue and red charts show statistics
for forehand and backhand strengths, respectively, in each
direction (extracted in Section 2.2). To simulate the game,
a Gaussian variable is added to the direction and strength of
each hit. Note that di↵erent players in di↵erent videos have
di↵erent statistics—a property which makes the proposed
interactive game system more realistic. The rendering of
hitting based on player characters is another distinguishing
feature of TRP.

3.2 Smoothing Transitions
Occasionally, the next selected clip may not be su�ciently

similar to the current clip, in which case the rendering result
will appear awkward when the two are directly connected.
For the example in Figure 5, the rendering result is not
smooth if we cascade CF

t

and Hit1,1. In our observations,
the dissimilarity between two clips comes from shape, color,
and motion. To smooth the transition, we propose to insert
transition frames between two cascading clips. The transi-
tion frames are calculated from the current clip and the next
selected clip by considering the smoothness of shape, color,
and motion. The number of transition frames can be dy-

(a) Insert 1 transition frame

Clip A Clip B

Clip A Clip B

(b) Insert 2 transition frames

Figure 6: Shape smoothing. (a) Insert one transi-
tion frame. (b) Insert two transition frames.

namically determined by the value of the similarity measure
in (5).

For shape smoothing, we attempt to interpolate the tran-
sition postures between two cascading clips. A well-known
approach for shape transition is the image morphing method
proposed by Seiz and Dyer [24]. With transition points la-
beled by users, image morphing can generate smooth tran-
sitions between two di↵erent images. Furthermore, a hierar-
chical and tile-based image warping scheme proposed by Gao
and Sederberg [4] can improve the results. However, neither
method can be directly applied to our application because
it is impossible to manually label the transition points be-
tween any two clips in a massive database. Therefore, an-
other challenge is how to automatically label the transition
points. With the help of the feature detection method pro-
posed in [18] and the feature descriptor in [16], feature points
on the images can be automatically detected and matched.
Suppose we wish to find the transition frames between two
images: I1(i, j) and I2(i, j). P1(k) and P2(k) are the posi-
tions of feature points on I1(i, j) and I2(i, j), respectively.
We propose to modify the cost function for view morphing
by adding the distance between feature points as shown in
the following equation.

W =
X

i

X

j

|I1(i, j)�Ĩ2(i, j)|2+�

nX

k=1

|P1(k)�P̃2(k)|2, (7)

where Ĩ2(i, j) is the warping result of I2(i, j), P̃2(k) are the
positions of the feature points in Ĩ2(i, j), n is the number of
matched feature points, and � is the weighting coe�cient.
The morphing process employs hierarchical and tile-based
warping with the cost function (7). The process iteratively
finds the minimum value of W and stops when W converges.
As an example of shape smoothing in Figure 6(a), we insert
one transition frame between clips A and B in which the
player in the transition frame has an intermediate posture.
Figure 6(b) is another example of shape smoothing with two
transition frames. It can be observed that transition frames
can e↵ectively smooth the clip connection.

For color smoothing, the clips in the database are seg-
mented from di↵erent time periods in a video. Therefore,
each clip may have a di↵erent background because of changes
in the weather. Occasionally, changes in background lighting
conditions lead to luminance variation in the clips, making
the transition unpleasing. To solve this problem, all clips in
the database are normalized to the color of the court with
Poisson Editing [19].

For motion smoothing, clips may have di↵erent movement
speeds and directions. A discontinuity in the motion will
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Current clip

Clips in Hit category

0 degree45-45

Forehand
Strength

Statistics as Hitting Properties 

Similarity
Computation

Hit1,1

Hitn,1

HD1

HDn

CFtCFt-1

0 degree45-45

Backhand
Strength

Figure 5: A suitable clip is chosen when the hitting clip has higher similarity to the current clip. The hitting
properties of a player depend on statistics from real videos. The blue and red charts show hitting statistics
for forehand and backhand strengths, respectively, in each direction.

(1)

Ref.

B.B.

Player B

Player A

Net

Ball

Y
X

Z

x
y

[ R | t ]

(x0, y0)

f0

Rear Audience

(2)

(3)

Left Audience

(4)

(5)

Right Audience

(6)
(7)

Figure 7: The structure of game system.

then make the rendering result discrete. To reduce disconti-
nuities in motion, we provide an intermediate motion state
to the transition frames. The intermediate motion state can
be a linear interpolation of speed and direction between the
two clips.

3.3 Game System
The entire game system includes rendering of not only the

player rendering but also the background. The background
is also an important component of a game system because
a better rendering of it will increase the game’s realism and
user enjoyment. Inspired by the method proposed by Horry
et al. [6] in “Tour Into the Picture” and the improved meth-
ods in [10], in TRP, 3D scenes are rendered from a 2D image
once the user manually labels the 3D structure of the image.
As the illustration in Figure 7 shows, the 3D structure of a
tennis court can be roughly modeled by seven boards: (1)
the floor, (2) the base of the rear audience, (3) the top of
the rear audience, (4) the base of the left audience, (5) the
top of the left audience, (6) the base of the right audience,
and (7) the top of the right audience. The 2D scene ren-
dered from the 3D structure is controlled by intrinsic and
extrinsic parameters of the camera as follows:

2

4
x
y
1

3

5 ⇠

2

4
f0 0 x0

0 f0 y0
0 0 1

3

5 ⇥
R | t

⇤

2

664

X
Y
Z
1

3

775 , (8)

Table 2: The computations per frame.

Items Computation Units

Clip Selection 45

Smooth Transition 160 ⇠ 270

Background Rendering 100

Foreground Rendering 20 ⇠ 90

where f0 is focal length and [x0, y0] are the o↵set coordi-
nates of the intrinsic parameters. The rotation matrix R
and translation matrix t are extrinsic parameters. By mod-
ifying these camera parameters, we can render virtual 2D
scenes from the 3D structure in any viewing angle. Incor-
porating foreground rendering into the 3D structure, the
foreground objects in Figure 7 are rendered in the following
order: Player B, net, referee, ball boy, ball4, and Player A.
In order to achieve more vivid player e↵ects, we also model
the light source and draw player shadows by warping player
shapes according to the position of light sources. To model
the motion blur e↵ect of a fast-moving ball, alpha blending
and multiple-ball rendering are used. More vivid rendering
results can be generated by attending to these details.

4. EXPERIMENTS AND DISCUSSION

4.1 Rendering Results
We designed a graphic user interface to show rendering

results at a resolution of 720 ⇥ 480 (Figure 1(a)), XY po-
sitions of players and ball on fiducial coordinates (Figure
1(b)), YZ positions of players and ball on fiducial coordi-
nates (Figure 1(c)), and motion paths of players A and B
(Figure 1(d)). In particular, Figures 1(b) and (c) clearly
illustrate that the game system is built upon a 3D model.
Figure 1(d) shows the potential motion paths of players, all
of which are based on a database extracted from real videos
of matches to record movement properties. Table 1 shows
the information of tennis players in the game and also in-
cludes the match videos where the players extracted from.
Because many Motion and Hit clips in the player database
are similar, we only select some clips with various moving

4If the depth of the ball is deeper than that of the net, the
rendering priority of the ball is higher than that of the net.
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Table 1: Information of player database and the match videos where the players extracted from.

Tennis Video Player Name # of Clips in Motion # of Clips in Hit

2009 French Open Semi Final Roger Federer 27 12

2009 Wimbledon Open Semi Final Serena Williams 22 12

2007 Australia Open Final Roger Federer 29 26

2009 French Open Semi Final Juan Martin del Potro 28 12

2009 Wimbledon Open Semi Final Elena Dementieva 22 12

paths and hitting postures in the real-time game rendering.
As shown in Table 1, 5 real tennis players are available in
the game, and the number of clips in Motion and Hit states
are also listed.

To control the player in the game, we analyzed the XYZ-
axis acceleration signals of Wiimote through the Blue-tooth
protocol for user’s gesture recognition. The hitting strength
of a player in the game is proportional to the statistics in the
match video and user’s force feedback. We suppose the hit-
ting strength from statistics is Fs, the user’s force feedback
is Fu, and the hitting strength of the player in the game is
Fs · ↵Fu, where ↵ is the parameter for the normalization.

4.1.1 Viewing Effect
Further rendering results are shown in Figure 8. Fig-

ures 8(a) and (b) show players competing on a court at the
French Open. To give more vivid visual e↵ects, shadows of
foreground objects are added to the court surface. Further-
more, the score is seamlessly painted on the court with alpha
blending. To increase excitement, the player’s hitting energy
is shown accumulating during the game with the bars in the
upper-right and lower-left corners. The player produces a
powerful stroke accompanied by a fire ball when the hitting
energy is full, as shown in Figure 8(b). Figure 8(d) shows
players competing on a court at Wimbledon. Figure 8(e)
shows a player and an animated character on a court at the
Australia Open, and Figure 8(f) shows two animated charac-
ters on a court at the US Open. These images demonstrate
that the rendering e↵ects are quite realistic and resemble
real videos.

The position of the camera is far from the tennis court in
Figures 8(b), (d), (e), and (f), whereas it is behind player A
in Figures 8(c), (g), (h), and (i). With changes in the view-
ing angle, the visual e↵ects of TRP are more vivid and o↵er
more novel experiences to users. Furthermore, the proposed
methods of database selection can determine suitable clips
and connect them to form various player movements and
postures. The smoothing transitions e↵ectively reduce the
awkward e↵ects caused by directly connecting two clips. A
demo video showing the player and background renderings
is available from the link of system overview in Section 1.

We find that the some rendering clips were still not smooth
enough. Because the morphing process needs to iteratively
refine the transformation, the much dissimilar clips will need
more computation time to get better results. However, the
requirement of real-time performance is always the critical
factor in the game rendering; thus some clip connections
cannot be refined to be perfect during the game. The num-
ber of discontinuous motion will decrease if the computer as
the game server has higher computation capability.

4.1.2 Computational Analysis
TRP is an interactive tennis game and requires real-time

rendering performance during user interaction. As men-
tioned in Section 3, the computations for rendering include
clip selection, smoothing transitions, background rendering,
and foreground rendering. Note that, the computation time
of player rendering in proportion to the number of player
clips, and the numbers of clips are listed in Table 1.

We set the computation of background rendering as 100
computation units (CUs) per frame and normalized the CUs
for the other steps as shown in Table 2. Foreground ren-
dering requires 20 to 90 CUs per frame depending on the
position of camera. For example, the computational load
is heavy when the camera position is close to the player as
in Figure 8(c), because a larger foreground area must be
rendered. Note that the computations for background ren-
dering do not decrease when foreground computations in-
crease, because the former is independent of the latter. Clip
selection would process and depend on the current pose of
the user. Due to the partial selection of player database,
clip selection only costs 45 CUs, and it would be linearly in-
creased when clip number increases. Smoothing transitions
require extensive computations to detect feature points, ex-
ecute the morphing process, and perform Poisson Editing.
In the experiments, smoothing transition requires 160 to 270
CUs per frame depending on the size of foreground players,
which costs the most computation in the game rendering.
We made a multi-thread program and employed a PC with
Intel i7 2.6GHz CPU to achieve a rendering performance of
720 ⇥ 480 and 30 fps, providing users with a more comfort-
able gaming experience.

4.2 Game Prediction with Player Statistics
Player rendering with hitting statistics and movement prop-

erties extracted from real videos is a key feature of TRP. A
player’s performance in TRP may reflect that player’s per-
formance in a real video. Therefore, we designed an ex-
periment to observe whether the performances of players in
TRP correlate with those in a real video. The experimental
results are shown in Table 3. Two real videos were used: the
men’s semi-final of the French Open and the women’s semi-
final of Wimbledon, both in 2009. From the match records,
the percentage of games won by Roger Federer in the former
is 51%. The percentage of games won by Serena Williams
in the latter is 54%.

To simulate a match with TRP, both players were con-
trolled by the computer. A Gaussian variable was added
in the direction and strength of hits to model the player in
the real video. The simulations were run for 5 and 3 sets
for the French Open and Wimbledon, respectively. The per-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Rendering results. Rendering results. (a)-(c) Two players competing on a French Open court.
(d),(g) Two players competing on a Wimbledon court. (e),(h) A player and an animated character competing
on an Australia Open court. (f),(i) Two animated characters competing on a US Open court.

centage of games won by Roger Federer was 55%, and that
by Serena Williams was 61%. Therefore, the performance
of a player in TRP can reflect that player’s performance in
real videos, although the former slightly overestimates the
latter. We realize that match results are di�cult to predict
because player performance depends not only on hitting and
moving but also on emotions, the weather, and chance. Nev-
ertheless, we might still test how well the simulated results
of TRP hold in general. For example, it would be interesting
to use TRP to predict the results of Federer’s performance
in the 2009 French Open final and in the 2007 French Open.
This could potentially show whether Federer’s technique has
advanced or regressed.

4.3 Subjective Evaluations
For the user study, we designed subjective evaluations for

twenty undergraduates who played TRP for the first time,
and the game environment was captured in our demo video.
Of the twenty evaluators, eleven had a habit of watching
videos of tennis matches whereas the rest did not. Sixteen
evaluators had a habit of playing games on PS3 or Wii,
whereas the others did not. Five questions were designed

to evaluate the experience of playing TRP, and four were
designed to compare the experiences of playing TRP, Wii
Sports, and Top Spin 3 on PS3.

Before the subjective evaluations, evaluators were required
to watch videos of tennis matches. Subsequently, they were
required to play TRP and score their satisfaction on a five-
point scale, i.e., 1, very unsatisfied; 2, somewhat unsatisfied;
3, no di↵erence; 4, somewhat satisfied; and 5, very satisfied.
The five questions were as follows:
Q.1 Did you have interactions with the video content from
playing TRP?
Q.2 Did you have an immersive experience with the game
of tennis from playing TRP?
Q.3 Was it entertaining and interesting to play TRP?
Q.4 Do you think that TRP is an innovative multimedia
application?
Q.5 Are you more willing to play TRP after watching videos
of tennis matches?

The average scores and standard deviations of the evalua-
tions are listed in Figure 9. The results show that evaluators
identify with increased interaction, immersive experience,
and enjoyment from playing TRP. Furthermore, they highly
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Table 3: The percentage of games won in real videos and in results simulated by Tennis Real Play.

Game Video Name of Player A Name of Player B Game Points A-B Game(%) Simulation(%)

2009 French Open S.-F. Roger Federer Juan Martin del Potro 3-6, 7-6, 2-6, 6-1, 6-4 51 : 49 55 : 45

2009 Wimbledon Open S.-F. Serena Williams Elena Dementieva 6-7, 7-5, 8-6 54 : 46 61 : 39

0
1
2
3
4
5

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9

TRP TP3 Wii

Figure 9: Results of subjective evaluation. The bars’
heights are the average scores, and the black lines
show the standard deviations.

agree that TRP is an innovative multimedia application and
are more willing to play it after watching videos of tennis
matches.

In the next phase, evaluators were required to play the
tennis games in Wii Sports(Wii), Top Spin 3(TP3) on PS3,
and TRP. They were told to use Wii as the standard of
comparison and give a score of 1 to 5 for their experience
with TP3 and TRP, i.e., 1, much worse; 2, somewhat worse;
3, no di↵erence; 4, somewhat better; 5, much better. The
four questions were as follows:
Q.6 Comparing the entertainment levels of each game, what
do you think of the performance of TP3 and TRP?
Q.7 Comparing the realism of the visual e↵ects, what do
you think of the performance of TP3 and TRP?
Q.8 Comparing the interactiveness of each game, what do
you think of the performance of TP3 and TRP?
Q.9 Comparing your preferences for each game, what do
you think of the performance of TP3 and TRP?

The average scores and standard deviations of the evalua-
tions are listed in Figure 9. The primary advantages of Wii
are the innovations in user-interactive dialogue (e.g., Wi-
imote). TRP also employs Wiimote for interactive dialogue.
From the results in Figure 9, the performances of TRP in
regard to visual e↵ects, interactiveness, and preference are
all higher than for Wii. Some subjects noted that TRP has
vivid rendering e↵ects and realistic player properties which
provided them with a more interesting and enhanced expe-
rience. Compared to TRP, the primary advantages of TP3
are its vivid rendering e↵ects of the court and the players.
The performances of TRP are slightly lower than those of
TP3 in terms of entertainment, visual e↵ects, and prefer-
ence. However, we feel that the performances of TRP are
still outstanding because TP3 requires dozens of individuals
to build the game model and draw textures. In contrast,
all of the materials in TRP are simply extracted from real
videos. Furthermore, this feature may also lead to a new
framework in game production; the latest game of TRP will
be available after a real tennis match is played.

5. CONCLUSION AND EXTENSION
Inspired by video analysis/annotation, video-based ren-

dering, and interactive sports games, an interactive ten-
nis game—TRP—constructed using models extracted from
videos of real tennis matches is proposed. As techniques
for player model creation, we propose a database normal-
ization process and a 4-state-transition behavioral model of
tennis players. For player rendering, we propose clip se-
lection, smoothing transitions, and a framework combin-
ing a 3D model with video-based rendering. Experiments
show that vivid rendering results can be generated with low
computational requirements. Moreover, the player model
can adequately record the ability and condition of a player,
which can then be used to roughly predict the results of real
tennis matches. User studies reveal that subjects like the
increased interaction, immersive experience, and enjoyment
from playing TRP. They also show that evaluators rate the
visual e↵ects, interactiveness, and preference for TRP higher
than those for Wii Sports but slightly lower than those for
Top Spin 3. However, unlike building complex scene models
or drawing player textures in Top Spin 3, all of the materi-
als in TRP are extracted from videos of real matches. This
property can also provide a new framework for game pro-
duction; the latest game of TRP will be available after a
tennis match is played.

Basically, some steps of the application can be improved
by utilizing a powerful computation server, which can in-
crease the rendering smoothness discussed in Section 4.1.1,
or the existing techniques. For example, a few recent meth-
ods for shape [8] [17] and color interpolation [15] which might
be useful to render more vivid viewing e↵ects. However, the
real-time constraint is one of reasons why we do not pre-
fer these techniques. Furthermore, there are some papers
addressing on pose estimation of tennis player [28] and re-
trieval of hitting statistics [27], but we only put emphasis on
player rendering and system integration.

Limitations of the current system include the restrictions
in the viewing angles and resolutions of the rendered game
frame. For example, the system cannot render arbitrary
views of the player, and the rendered game frame is blurry if
the resolution of the tennis video is insu�ciently high. Nev-
ertheless, the limitation in viewing angles can be overcome
if multiple videos from di↵erent cameras are made avail-
able. By constructing a database of multiple court models
and players, the system can render game frames from any
viewing angle. To overcome the limitation of low resolu-
tion, super-resolution techniques may be employed to pre-
serve more details from the real video.

For future studies, our top priority is to extend the ap-
plication of the proposed methods to other sports videos.
The proposed methods in player model creation and player
rendering will be modified. For example, the techniques of
database normalization, clip selection, and smoothing tran-
sitions can be applied to videos of football games. Specifi-
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cally, the proposed four-state-transition model of tennis play-
ers can be replaced by a transition model for football players
(i.e., shot-pass-stop-motion). In this way, the framework in
TRP can be extended to other sports videos to create games
such as Football Real Play and Baseball Real Play.
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