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This paper proposes a new method for presenting sports videos. Tennis videos are used as an example for
the implementation of a viewing program called as Tennis Video 2.0. For the methods in video analysis,
background generation by considering the pixels in temporal and spatial distribution is proposed; fore-
ground segmentation combining automatic trimap generation and matting model is proposed. To provide
more functions in watching videos, the rendering flow of video contents and the semantic Scalability are
proposed. With the new analysis and rendering tools, the presentation of sports videos has three prop-
erties—Structure, Interactivity, and Scalability. The experiments show that several broadcasting game
videos are employed to evaluate the robustness and performance of the proposed system. For user study,
20 evaluators highly identify that Tennis Video 2.0 is a new presentation of sports videos and give people
better viewing experience.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Watching sports videos is a popular entertainment. Many peo-
ple watch sports on television or computer and later discuss the
highlights with friends. However, people just only watch sports
in the manner in which they are broadcast and cannot watch
games in a manner preferred by them. For example, sport videos
are often interrupted by the advertisements, which is undesirable
as they reduce the excitement involved in watching a game. Pro-
gress in broadcasting technology has made it possible for people
to interact with TV contents and be able to choose their preferred
sports channels, submit requests to broadcast, and even watch cus-
tomized sports videos. Therefore, there is much research that can
be conducted and various applications that can be developed for
interactive broadcasting. Examples of two research topics regard,
how to generate interactive video and how many presentation
functions can be provided to enrich game videos.

In recent years, there has been a dramatic growth in research on
sport video applications. Kokaram et al. provided a complete
review on content indexes and retrieval methods of sports videos
[1]; Inamoto and Saito proposed the synthesis of free viewpoint
ll rights reserved.
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that would let viewers decide their own viewing angles in order
to enhance their experience of watching sport games [2]; Li et al.
provided real-time advertisement insertion on game court in order
to avoid game interruption [3]; Tang et al. presented a content-
adaptive system for streaming the goal events of soccer games over
a network with low bandwidth limitations [4]; and Wikstrand and
Eriksson employed animations to represent a football game on
mobile phones [5]. However, when considering the entire genre
of sports video applications, some suggestions still need to be
considered:

� The video contents of broadcasts should be fully annotated. In
other words, each ball trajectory, player gesture, and highlight
should be recorded on the video. People should be able to
browse the video contents and quickly get game information
on demand.
� More applications should be provided that enrich the viewing

experience. Broadcasts should provide functions that will allow
viewers to choose the manner in which they wish to watch
game videos—replaying their favorite highlights and analyzing
players’ postures in detail. Moreover, all applications must
enable real-time interaction with viewers, and their requests
must be responded to instantly.
� Game videos need to provide different video bitstream for

different viewing devices like mobile phones, computers, or
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Fig. 1. Block diagram of the processing flow in Tennis Video 2.0. We propose
methods of the background generation, foreground segmentation, steps of video
rendering, and scalable video in semantic domain.
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televisions. Considering the limitation of transmission band-
width, the video contents should have scalable properties.

We develop new methods in the analysis and rendering of video
contents to achieve above requirements. Fig. 1 is the block diagram
of the processing flow in Tennis Video 2.0, which includes two
parts: video analysis and video rendering. First, a video is parti-
tioned into several shorter clips by analyzing the video structure.
Next, the background scenes are generated from each clip and used
to segment foreground objects, and the information of foreground
objects is employed for video annotation. After that, three steps of
video rendering are proposed to reintegrate the video content and
implement the scalable video in semantic domain. In this paper,
the contributions of the proposed methods are listed below.

� For the generation of background scene, we propose a method
to generate the background scenes from the video frames by
calculating the pixel value with maximum probability in tem-
poral and spatial distribution. Note that the method can pre-
serve the details of background scene and remove foreground
objects without human-assistance.
� In the foreground segmentation, the method to generate the tri-

map1 and a segmentation method with the matting model is pro-
posed that can precisely segment the foreground objects from the
complex background. Unlike the binary mask of segmentation
results in the previous works, the segmentation results are pre-
sented with alpha values that not only accurately present the dis-
tribution of foreground object but also give the better viewing
effect in the video rendering.
� We propose a brand-new processing flow to render videos, which

introduces the sports videos with a new presentation and pro-
vides viewers functions with more interaction and customized
experience. In addition, the capacity of real-time processing of
video rendering lets viewers to watch the customized video
immediately.
� Scalable video is a topic to reduce video bitstream size under

different bandwidth constrains. Contrary to decreasing the
video quality to reduce video bitstream, the smaller bitstream
size in the proposed methods is achieved by abandoning the
video contents with less semantic importance. The experimen-
tal results show that the bitstream size of a video is effectively
decreased and the visual quality is still maintained in the
proposed method.

With the development of new content analysis and rendering
methods, we propose an integral framework to provide new sports
videos that have more functions. In this study, we use tennis as an
example for the presentation of the new sports video called Tennis
1 Trimap is a map indicating the background, foreground, and unknown region on
an image.
Video 2.0. Contrary to the traditional game videos, Tennis Video 2.0
provides three properties: Structure, Interactivity, and Scalability.

� Structure. People can browse the game videos and watch the
highlights in time-based or event-based sorting. Moreover, the
graphic user interface (GUI) of Tennis Video 2.0 also provides
a search function for game strategy. The strategy search is dif-
ferent from general event search because it can search for
events on a higher semantic level.
� Interactivity. Instead of interrupting the game to play the

advertisement, the game continues while the advertisements
are rendered on the tennis court. The spotlight is a function that
enriches the viewing experience with multiple hitting postures
of the players. The tracker view animates the camera so that it
focuses on the player or the ball, which provides an alternative
to the traditional experience of a steady camera. Note that all of
the above functions provide real-time responses so people are
able to personalize their game watching experience.
� Scalability. The GUI supports different bitstream size for differ-

ent transmission bandwidths. Instead of lowering the bitstream
size by reducing the video quality, the proposed scalable video
has four different bitstream sizes based on information reduction
on semantic level. By methods of video background reuse, video
clip abandonment, video content abandonment, and video in ani-
mation, the requirements of lower bandwidth are achieved.

The remainder of this paper is structured as follows: Analysis of
video contents is described in Section 2, and the rendering of video
contents is described in Section 3. Section 4 shows the experimen-
tal results and has discussions. Finally, the paper is concluded in
Section 5.
2. Analysis of video contents

In tennis game videos, the video contents repeat the following
iteration: service, game play, and game stop. One service-play-stop
video clip can be divided into a Video Unit as shown in Fig. 2. Each
Video Unit usually represents an event in a tennis video, that be-
gins with a serve and ends before the next serve. With such a reg-
ular structure, the process of temporal structure analysis can be
done by finding all play shots in the game video [6]. Afterward
the whole video can be decomposed into Video Units. To further
analyze the information in the play shot of each Video Unit, we
propose methods to separate the background court and foreground
objects. More details will be described in the following sections.

2.1. Generation of background scenes

The generation of the background scenes is an important step in
Tennis Video 2.0 because background scenes can be used for the
foreground segmentation and provide the functions of background
editing in the video rendering. To build the background scenes, the
sprite plane is employed. A sprite is an image constructed from a vi-
deo sequence, and it is also used as a highly efficient video coding
method [7,8]. For our purpose, the sprite plane is the tennis court
composed of the play shot in a Video Unit. First, the video frames
Fig. 2. Video Unit of a tennis video. It represents one service-play-stop video clip in
a tennis game.
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are projected to the sprite plane with the perspective motion model
in (1). The perspective motion model can model the possible camera
motions in the tennis video including panning, tilting, and zooming
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where mv1–mv8 are the transformation parameters from frame
coordinates (xv,yv) to the sprite plane coordinates (xs/ws,ys/ws),
and feature detection and feature matching are the methods to pro-
ject the frame coordinates to court coordinates. The first step in
Fig. 3 illustrates the projection from the video frame to the sprite
plane, and we employ the matching of feature points to calculate
the projection parameters. The feature detection can be imple-
mented by the Harris Corner Detector [9], and the descriptor of each
feature point is presented by scale-invariant feature transform
(SIFT) [10]. After that, the parameters of projective transform can
be calculated by solving the equation of matching feature pairs on
the spite plane and video frames [11]. Sometimes, there are
potion-misalignments of the features that would decrease the
accuracy of frame projection. To extract more precise projection,
the transformation parameters calculated from the feature match-
ing are further refined by minimizing the cost function E,

E ¼
X
i2N

jeðiÞj2 ¼
X
i2N

jIðxv ; yvÞ � I0ðx0v ; y0vÞj
2
; ð2Þ

where I(xv,yv) is the luminance value of pixel (xv,yv) in the video
frame, I0ðx0v ; y0vÞ is the luminance value of the corresponding position
ðx0v ; y0vÞ in the sprite plane, and N is the set of pixels on the overlap
region. The minimization process is implemented by use of
Levenberg–Marquardt iterative minimization algorithm [12] as
shown below

Md ¼Md�1 þ A�1B; ð3Þ

Ak;j ¼
X
i2N

@eðiÞ
@mvk
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; Bk ¼
X
i2N

�eðiÞ @eðiÞ
@mvk

; ð4Þ

where Md is the transformation matrix at the dth iteration, A is an
8 � 8 matrix, B is an eight-tuple vector, @e(i) is the differential of
pixel difference in (2), and mvk and mvj are the transformation
parameters from mv1 to mv8. The iterative process is repeated until
the improvement of each parameter converges, or the number of
iteration is larger than the maximum number of iteration.

There are several previous studies proposed methods to gener-
ate sprite images. For the early developments of sprite, Smolic et al.
proposed the technique for long-term global motion estimation
and applied the sprite on video coding [13], and Lu et al. proposed
an efficient static sprite-generation and the complete compression
scheme for background video coding [14]. However, they needed
manually label the foreground objects in a sequence before the
process of sprite generation because the motion vectors of
Projection from video frame to sprite plane
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by the background in

Video Frame

Reconstru

(Ox, Oy)

Sprite Plane

(x', y')

(x, y)

Z

X

Y

Video Frame

Fig. 3. Processing flow of background proj
foreground objects are usually different from the background
scenes. Nevertheless, it would be impractical to manually label
the foreground regions in a game video, and we propose the meth-
od to generate sprite images with foreground removal. The main
idea to remove foreground objects is based on the observation that
the moving objects do not occupy a fixed position on the game
court for a long time. Thus, we can assume that the maximum tem-
poral distribution on each pixel location should be the background

Eð1Þxi ;yi
¼ arg max

k
hxi ;yi
ðkÞ; ð5Þ

hxi ;yi
ðkÞ ¼

Xt2

t¼t1

dðItðxi; yiÞ � kÞ; 8k 2 C; ð6Þ

where Eð1Þxi ;yi
is the pixel-value with maximum appearance probabil-

ity at the coordinates (xi,yi); the index 1 implies that Eð1Þxi ;yi
is the ini-

tial pixel-value of the generated sprite, hxi ;yi
ðkÞ is the appearance

number of pixel-value k under a period time [t1, t2] at the coordi-
nates (xi,yi) on the sprite, d(�) is the impulse function, and C is the
RGB color space.

The assumption that a pixel-value with the number of maxi-
mum appearance on temporal distribution is a background pixel
is true when foreground objects exhibit rapid movement. Never-
theless, the foreground objects and background scenes may have
equivalent appearance probabilities if the foreground objects
occupy a fixed region for a period of time. Under such conditions,
the foreground pixels would be chosen as the background pixels.
To solve this problem, information on the temporal distribution
of pixels is not enough. Pixel correlation of spatial co-appearance
also needs to be considered for determining the background pixels.
The pixel correlation of the spatial co-appearance is described in
Fig. 4. Each chosen pixel on the sprite has an individual co-appear-
ance probability corresponding to the surrounding pixels. The cur-
rent pixel-value, EðnÞxi ;yi

is updated by the co-appearance probability
of surrounding pixels in the correlation region R. The probability of
co-appearance can be mathematically expressed as in (7)

sðnÞxi ;yi
ðk; jÞ ¼

Pt2
t¼t1

dðItðxi; yiÞ � kÞdðItðxj; yjÞ � EðnÞxj ;yj
ÞPt2

t¼t1
dðItðxj; yjÞ � EðnÞxj ;yj

Þ
; ð7Þ

where sðnÞxi ;yi
ðk; jÞ is the co-appearance probability of pixel-value k at

coordinates (xi,yi) under the pixel-value EðnÞxj ;yj
at coordinates (xj,yj)

in a period of time [t1, t2], and the index n is the iteration number
of pixel updates. Note that each pixel in the region R has an effect
on the update of the current pixel. Then, the current pixel-value is
updated by the value k with maximum summation probabilities.
The updated pixel-value Eðnþ1Þ

xi ;yi
is written in (8)

Eðnþ1Þ
xi ;yi

¼ arg max
k

X
8j2R

sðnÞxi ;yi
ðk; jÞ: ð8Þ

It should be noticed that each pixel-value on the sprite is iteratively
updated by (7) and (8). The update process is repeated, until all the
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pixel-values on the sprite are converged or the number of iteration
is larger than the threshold. Finally, the pixel-values on the sprite
are used as the background scene.

2.2. Segmentation of foreground objects

Some studies describing the segmentation by the background
information can be found in the previous literature. Han et al.
trained the dominant background color based on Gaussian mixture
models and extracted foreground objects by removing the pixel
belong to background color [15]. This method could effectively
remove the foreground objects in the background with homoge-
neous color but failed in the non-homogeneous background. For
methods with background modeling, Chien et al. proposed an effi-
cient method to build background scene while foreground objects
were segmented by frame difference [16]. However, this method
only worked under the steady camera. For tennis videos, the possi-
ble camera motions are the panning, titling, and zooming, which
make the segmentation process become more difficult.

In this section, a segmentation method combining background
information and matting model is proposed. First, the video frame
without foreground objects can be reconstructed from the sprite
plane by the transformation parameters in (1), which is also called
reconstructed frame in Fig. 3. Next, the foreground objects can be
segmented by the frame difference [17]. However, the segmentation
results were sometimes unacceptable under the situation that the
foreground color is similar to the background color. It is because
how to set a proper threshold to detect the region belong to the fore-
ground or background is difficult. To improve the segmentation re-
sults, some methods called soft segmentation were proposed like
Bayesian Matting [18]. Bayesian Matting models both the fore-
ground and background color distributions with spatially-varying
sets of Gaussians, and assumes a fractional blending of the fore-
ground and background colors to produce the final output. The equa-
tion of color blending is shown in the following equation

C ¼ aF þ ð1� aÞB; ð9Þ

where C, F, and B are pixel’s composite, foreground, and background
color, respectively, and a is the pixel’s opacity component used to
linearly blend between the foreground and background. The seg-
mentation results of Bayesian Matting are better than the results
of frame difference; however, the trimap needs to be manually
labeled before the matting procedure. As shown in Fig. 3, the trimap
is a map indicating the foreground (white), background (black), and
unknown (gray) regions on the image. The generation of a trimap is
time consuming and requires human-assistance, and therefore
previous researchers have developed some methods to facilitate tri-
map generation. For example, Chuang et al. used optical flow and
background estimation for trimap prediction to reduce the efforts
of human-assistance [19]. Unfortunately, fully-automatic genera-
tion of a trimap was not achievable in these studies.

For the automatic generation of a trimap, the pixel difference
between the reconstructed frame and the video frame is calculated
to decide the foreground, background, and unknown regions.
Unlike setting a threshold T to label a pixel belonging to the
foreground or background, we set an obviously low threshold Tl

and an obviously high threshold Th to decide the background re-
gion and the foreground region, respectively. The pixel difference
between Tl and Th is labeled as the unknown region as the gray re-
gion in Fig. 3. After that, the trimap is automatically generated
without human-assistance. After trimap generation, a pixel’s com-
position C can be modeled as a Gaussian probability distribution
center as the predicted color with standard deviation rC. The spa-
tial coherence of the image is estimated to model foreground dis-
tribution. Log likelihood for the foreground can be modeled as an
oriented elliptical Gaussian distribution center as F with a
weighted covariance RF . Although the background color B is al-
ready known in our application, we still model a Gaussian proba-
bility distribution center as B with the standard deviation rB to
model the camera noise. The equation of matting procedure is de-
rived as the following equation:

R�1
F þ Ia2=r2

C Iað1�aÞ=r2
C

Iað1�aÞ=r2
C Ið1=r2

Bþð1�aÞ2=a2Þ

" #
F
B

� �
¼

R�1
F FþCa=r2

C

B=r2
BþCð1�aÞ=r2

C

" #
;

ð10Þ

where I is a 3 � 3 identity matrix. The details of equation solving are
explained in [18]. The last step in Fig. 3 illustrates the model of mat-
ting equation in (10), and we can see that a pixel’s composition C is
modeled as a Gaussian probability distribution center as the color C
on the frame in RGB color space with standard deviation rC. B is the
pixel value on corresponding position in the sprite plane, and the
background pixel B is modeled as a Gaussian probability distribution
with the standard deviation rB. The pixel value of foreground F can be
modeled as an oriented elliptical Gaussian distribution center as F
with a weighted covariance RF in RGB color space. Note that the var-
iation of Gaussian distribution of foreground pixel is modeled as the
weighted covariance but not a unit distribution rF because F is an
average pixel-value summarized by the surrounding pixels In other
words, the foreground pixel is modeled with the distribution of sur-
rounding pixels that is different from the model of camera noise of
the observed pixel C and the known pixel B. The weighted covariance
RF is the pixel distribution calculated from the surrounding pixels.

The background pixel B, foreground pixel F, and a can be
extracted by solving (10). Unlike the results of binary segmenta-
tion, the segmentation mask of matting results is gray-level
distribution. The brighter regions mean the larger blending ratio
of foreground object, and the darker regions mean the less blend-
ing ratio of foreground object.

2.3. Event detection

Facing the large quantity of sport videos, viewers can easily
browse the game video and find out hot events and highlights with
video analysis tools. Several previous works on sport video annota-
tion can be found in literatures. For instance, Tien et al. provided a
favorable way, called as Sports Wizard, for the user to browse
sports videos based on semantic concepts or game structure [20].
Zhang and Chang detected baseball event using superimposed
caption recognition [21]. Hung and Hsieh combined captions and
visual features for semantic event detection of baseball video
[22]. It can be found that lots information can be extracted from
the videos and used for video annotation. Especially, the score
box provides plenty of event information in a sports video, and it
can be applied on a tennis video as well. The score box usually
has the same style, character type, and exists in the corner of
screen in a broadcasting video. Therefore, we can set score box
location and save all number/character images in advance as a
prior knowledge. To recognize the numbers in score box, template



Table 1
Information for video annotation.

Event Score info. Pattern of hit position

Ace Server gets score Length equal to 1
Fault or net Score fixed Length equal to 1
Double fault Receiver gets score Length equal to 1
Hit-before-net Do not care a or b exists
Break point Final score and server loses Do not care
Rally Score changed Length longer than 1
Null Score fixed Length equal to 0
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matching is employed to find the best matched pre-stored number
images. With this method, the score numbers and server in tennis
games are extracted.

Next, the semantic information can be retrieved from the fore-
ground segmentation. In many sports videos, the moment, when
the player hits the ball, is a key event and contains semantic infor-
mation for video annotation, like shots in soccer [23], strikes in
baseball [24], shoot in basketball [25], and rallies in tennis. The
player’s positions at the hit moment are the important information
for video annotation. Several previous works proposed methods to
detect the hit moment. For example, Cai et al. detected highlight
sound in an audio stream and employed Hidden Markov modes
(HMMs) to model those sound effects for event detection [26].
Chen et al. presented a physics-based scheme which utilized the
motion characteristics to extract ball trajectory from lots of moving
objects [27]. Tien et al. presented an approach that employed
visual and aural cues to perform event detection in tennis videos
[28]. A Kalman-based prediction model was proposed to model
the ball trajectories in a tennis video, and a moment was recog-
nized as the hit time when the ball was close to the player [17].
In this paper, we adapt Cai’s method to detect the hit sound in
an audio stream but not to detect ball trajectory in a video. The
main reason is that the ball in tennis videos is extremely small,
and the ball often disappears from the video frame because of
the high speed movement, quantization of video coding, or being
occluded by players. After hit time detection, the player’s position
at the hit moment is represented as the label in Fig. 5, and these
positions in each Video Unit are recorded as hit-position patterns
like (c d e d) or (c c a). Note that the rally count of each Video Unit
is easily presented as the length of a position pattern. Combing the
score box information and hit position patterns, each Video Unit is
annotated by the events shown in Table 1. The annotation result
includes seven events: ace, fault or net, double fault, hit-before-
net, break point, rally, and null. For example, an ace event is judged
as the server’s score, and only one player hits the ball.
3. Rendering of video contents

A number of studies have been published on sports video anal-
ysis [29,30], highlight detection [31–33], and content enrichment
of sports videos [34,35]. These previous works have provided peo-
ple with a convenient way to watch sports highlights and an inter-
esting way to enjoy games. To further improve the viewing
experience, game videos should provide interactive functions or
customized video contents to viewers. However, only a few pieces
of literature on video interaction can be found. In this section, we
propose video rendering to achieve above requirements.
3.1. Flow of video rendering

Instead of directly playing the game video, the proposed video
rendering reintegrates the extracted information in Section 2 and
generates video contents according to the user’s requests. The
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Fig. 5. Labels of player’s position at the hit time.
concept of video rendering brings the viewers a fresh viewing
experience and provides more enjoyment from watching games.
The proposed video rendering can provide real-time responses to
immediately satisfy a user’s requests. Fig. 6 is the proposed render-
ing flow, which contains three main steps: sprite-plane processing,
watching-view generation, and foreground pasting.
3.1.1. Sprite-plane processing
The first step of video rendering is to modify the sprite plane in

order to achieve some visual effects. Several possible functions are
described.

� Score is a function that displays the game scores on the court,
which gives viewers a fresh alternative to score boxes. To
achieve this function, the score is painted on the target region
of the sprite plane as seen in the first step in Fig. 6. In order
to make the painted score seamless with the court, the lumi-
nance and color of the painted score are adjusted to fit the back-
ground color through Poisson image editing [36].
� Comment is a function that lets viewers insert comments or

annotate texts on the play court. Sometimes, these insertions
could even be a watermark to protect the video contents from
being illegally copied. To achieve this function, the text com-
ments are painted on sprite plane.
� Advertisement is a function that lets the video provider display

advertisements in video or text formats during the game. Note
that the insertion of advertisements will not interrupt the game
proceedings, which should not detract from the excitement of
watching game videos. To achieve this function, the advertise-
ments are displayed on a specific region of the sprite plane.
By adjusting the alpha value of luminance and color, the adver-
tisements can be seamlessly integrated into the video.

3.1.2. Watching-view rendering
After sprite-plane processing, the watching view is rendered

from the edited sprite plane with the transformation matrix in
the following equation
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where (xs/ws,ys/ws) are the coordinates in the sprite plane, (xw/
ww,yw/ww) are the coordinates in the watching view, and ms1–ms8

are the transformation parameters. The watching view is equal to
the original video frame when (11) is equal to the inverse of (1).
In addition, the rendering view can be different from the original vi-
deo by modifying the transformation parameters. For example, the
watching view is shifting to the left half of the court by decreasing
the ms3, and it is focused on a specific player by increasing the ms1

and ms5. Two functions of game watching are created by modifying
the transformation parameters.
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� Player Tracker is a function that controls the camera to track a
specific player using zooming in. This viewing effect is like putt-
ing a magnifying glass focusing on the player. A game video that
uses the zoom-in effect can provide a better watch experience
for devices with smaller screens. To achieve this function, the
zooming factors, ms1 and ms5, are increased in order to create
a camera zoom-in effect. The translation parameters, ms3 and
ms6, add translation velocity Vh and Vv in the horizontal and ver-
tical direction respectively to make a player appear inside the
window.
� Ball Tracker is a function that controls the movement of the

camera by following the ball’s trajectory. Contrary to focus on
the player’s position in Player Tracker, the transformation
parameters are calculated using information of hit moment
described in Section 2.2. In order to provide more comfortable
rendering results, the camera movement is modeled as the qua-
dratic movement between two adjacent players’ positions at
the hit moments.

3.1.3. Foreground pasting
Before pasting foreground objects on the rendered frame, the

objects’ positions and sizes should be calculated and adjusted be-
cause they are all referenced to the video frames. First, the coordi-
nates (xðf Þv ; y

ðf Þ
v ) of player feet in the video frame can represent the

player’s positions on the court. By using (1) and (11), the feet
coordinates of the player are transformed from video frame to
watching view, and (xðf Þw =wðf Þw ; yðf Þw =wðf Þw ) are the corresponding coor-
dinates. For the adjustment of an object’s size, it should be noticed
that the object stands on the court and cannot be directly pasted on
the watching view by the transformation parameters in (1) and
(11). Nevertheless, the object’s size should be scaled according to
the standing position on the court. The scale ratio of the object
from the video frame to watching view can be retrieved by the dif-
ferentiation results. The foreground objects should be zoomed by
the factor calculated from the following equation

Scaleratio ¼
@

xðf Þw

wðf Þw

@xv

@
yðf Þw

wðf Þw

@yv
: ð12Þ

In foreground pasting, two functions are created by modifying the
pasting number.

� Continuous is a function that enables viewers to watch the
game videos with multiple players in contiguous motion. View-
ers can see the complete highlights of player gestures and also
have more interesting viewing experiences. To achieve this
function, the players in current time and previous times are
pasted. In the experiments, three players are pasted at the time
t, t � 1, and t � 2 s.
� Hit Time is a function that displays multiple players at the cur-

rent time and previous hit moments. The player’s position and
gesture at hit moment represent important semantic informa-
tion in a tennis game. Viewers can learn the game strategy by
the positions and gestures of the players at the hit moments.

After the three steps shown in Fig. 6, the enriched video is ren-
dered by enabling the above functions. By using such viewing func-
tions, viewers can have a more interesting and enjoyable viewing
experience.

3.2. Video rendering with Scalability

The proposed rendering flow not only provides interesting
viewing experience but also gives the scalable property on video
bitstream size. Scalability is the property that models video trans-
mission under different bandwidth limitations. Scalable video cod-
ing (SVC), the scalable extension of advance video coding (AVC)
[37], is a current standardization project for video compression un-
der different transmission bandwidths. It provides variable video
sizes by reducing the video resolution (spatial domain), decreasing
video frame number (temporal domain), and increasing quantiza-
tion parameters (PSNR domain). However, the viewing quality for
lower video sizes is often seriously decreased and is not acceptable.

Contrary to scaling the bitstream sizes in spatial, temporal, and
PSNR domains, the proposed Scalability provides different bit-
stream sizes in the semantic domain. As mentioned in previous
sections, the game video has been decomposed into play shot
and non-play shots in the temporal domain, and the video content
of play shots are further separated into different layers. By reinte-
grating this extracted information, the video content can be ren-
dered in different formats for different bitstream sizes. In other
words, smaller size is achieved by reducing unnecessary video con-
tents in semantic consideration, but the visual quality is still main-
tained. The proposed Scalability in semantic domain is classified
into four levels as shown in Fig. 7.

3.2.1. Video background reuse
It can be observed that the view of the tennis court rapidly ap-

pears in a game video, which covers a large percentage of the area
of play shots. If the background court can be reused in the video
broadcast, it will obviously decrease the bitstream size. Thus, the
bitstream reduction in Level 1 is achieved by reusing the back-
ground scenes. Notice that the background court and foreground
objects of the play shots are individually transmitted, but the back-
ground court is only transmitted once and reused in the subse-
quent video. Although the background court is abridged in the
subsequent transmission, the rendered video in Level 1 is still iden-
tical to the original game video. Thus, the bitstream reduction in
Level 1 is achieved by reducing the redundant transmission of
the background court. It should be noted that non-play shots are
transmitted in the single layer without further video processing
due to the complexity of the scenes.



Video Unit
Play Shots Non-play Shots

Level 1Content : original broadcasting 
video

Content : sprite, 
players, ball and 
audience

Content : sprite, 
players and ball

Content : sprite, 
players, ball and 
audience

Content : video rendering from 
serve shot by highlight replay

Content : coordinates of 
player and ball

Content : continuous symbol 
display and hit position display

Level 2

Level 3

Level 4

Content : video rendering from 
serve shot by highlight replay

Fig. 7. The illustration of a scalable video. Scalability provides four levels of video content in the semantic domain.

2 http://media.ee.ntu.edu.tw/larry/tennis2/.
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3.2.2. Video clip abandonment
To decrease the bitstream size in Level 2, the approach is to

abandon the video clips with less semantic importance. With
regard to semantic importance, play shots have more important
game information than non-play shots which are usually event re-
plays or the close view of players. Furthermore, the average bit-
stream sizes for the non-play shots are greater than play shots
due to the rapid scene changes. According to the above consider-
ations, the non-play shots are abandoned and the total bitstream
size is extremely reduced. To fill the absence from non-play shots,
highlights in the play shots are played. The highlights can be a vi-
deo clip from the play shots with longer player running distances
because the situation is exciting when the opposite makes the
player run a long distance to return the ball.

3.2.3. Video content abandonment
To further decrease the bitstream size in Level 3, the approach is

to abandon certain video contents in the play shots. While watch-
ing game videos, people pay most attention to the players and less
attention to non-essential objects like the referee, ball boys, and
people in the stadium. However, these non-attractive objects take
up lots of transmission bandwidth. Therefore non-attractive ob-
jects are abandoned to reduce the bitstream size, and only the ball
and players are transmitted. To fill in the empty time cause by the
absence of the non-play shots, highlight replays, similar to the pro-
cess described in Level 2, are rendered. In addition, there is an
interesting effect in Level 3 that all the objects, besides the ball
and players, are static in the video.

3.2.4. Video in animation
To extremely decrease the bitstream size in Level 4, animation

is employed to represent the game video. By extending the reduc-
tion described in Level 3, only the positions of the ball and players
are transmitted. Level 4 is proposed for extremely low transmis-
sion bandwidths. Although there are no player postures or other
detailed game information, the state of the game is still roughly
represented by these coordinates. During the time of non-play
shots, statistic data are shown such as player trajectories and hit
positions. With the trajectories of the ball and players, the tech-
niques of computer graphics can provide users new experiences
of watching game videos [38].
4. Experiments and discussion

Several broadcasting game videos with resolution 720 � 480
are employed to evaluate the robustness and performance of the
proposed system. Notice that all test videos are applying the same
threshold in video analysis and rendering. The video demonstra-
tions of Tennis Video 2.0 are available on the website.2

4.1. Results of video content analysis

For the settings of background generation in Section 2.1, the
parameter R is the correlation region to update the current pixel.
We have the experiments with different settings of correlation re-
gion, e.g., 1 � 1, 3 � 3, 5 � 5, and 7 � 7 pixels. The results show that
the generated sprite plane has less temporal defect with setting a
larger parameter R but the computation increases exponentially.
In addition, we find that sprite defects would be almost removed
with setting area larger than 3 � 3, so we set a range of 5 � 5 pixels
in the experiments.

http://media.ee.ntu.edu.tw/larry/tennis2/


Fig. 9. Experimental results of foreground segmentation. (a, f, k, p) Input video
frames. (b, g, l, q) Segmentation results of [15]. (c, h, m, r) Segmentation results of
[17]. (d, i, n, s) Proposed methods for trimap generation. (e, i, o, t) Segmentation
results of the proposed methods.
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For the settings of trimap generation in Section 2.2, a pixel is la-
beled as the background when the difference of pixel-value is less
than Tl. A higher setting value of Tl would enlarge the background
region in a trimap, and a lower setting value would enlarge the un-
known region. The experiments with different setting values of Tl,
from 50, 100, 200, 300, 400 to 500, show that there are some over-
segmentation in the results with a setting value less than 50 and
some defects in the segmented foreground with a setting value lar-
ger than 300. Therefore, the value of Tl is set between 50 and 300 to
get the better performance. For the setting of Th, a pixel is labeled
as the foreground when the difference of pixel-value is larger than
it. A lower setting value of Th would reduce the unknown region in
the trimap, but a higher setting value may reduce the foreground
region. We have set various values of Th, from 500, 600, 700, 800,
900 to 1000, as the experiments and found that segmentation re-
sults are almost independent from the Th if we set a value larger
than 500. One of the reasons is that most foreground objects have
different color distribution from that of background scenes. As for
the situation that the foreground color similar to the background
color, the pixel would be labeled as the unknown region in a tri-
map, and the proposed matting model in (10) would calculate
the distribution of foreground and background color. That means,
Th and Tl are not crucial parameters, and the system can work well
with fixed values. Note that all segmented results in the figures and
demo videos in this paper are with the same settings, Th = 900 and
Tl = 100.

Fig. 8(a) and (b) is the input video frames with the moving fore-
ground players. Fig. 8(d) and (e) is the initial background scenes
composed of pixel-values with maximum probability in temporal
distribution in (5). It can see that the moving foreground can be
completely removed. Unlike the moving players, the background
audiences occupy the fixed region and have gesture change all
the time. The pixel-values with temporal peak distribution cannot
correctly present the background scene like Fig. 8(c). These incon-
sistent pixels belong to different objects and make the background
scene look like blended with noise. After updating process by the
spatial correlation in (8), the inconsistent pixels are iteratively de-
leted and the background quality is improved in Fig. 8(f). We can
see that the update procedure is effective to remove the defect
from temporal filter.

Fig. 9 shows the comparisons of foreground segmentation
between the proposed methods and previous works [15,17].
Fig. 9(a), (f), (k) and (p) is the input video frames with foreground
players, Fig. 9(b), (g), (l) and (q) is the segmentation results of [15],
and Fig. 9(c), (h), (m) and (r) is the results of [17]. We find that the
methods in [15] can precisely segment the players under the homo-
geneous background but failed in the non-homogenous background
like Fig. 9(p). The methods in [17] can accurately segment the players
under the complex background scenes, but the results need to be im-
proved under the foreground color is similar to the background col-
a

d
b

e

c

f
Fig. 8. Experimental results of background generation. (a, b) Input video frames
with foreground players. (d, e) Background scenes with the pixels in the temporal
peak distribution. (c, f) Background scenes before and after the process of spatial
correlation.
or. With the automatically generated trimap, the proposed
segmentation method with matting model calculates the a values
in the unknown region. For the results of trimap generation in Sec-
tion 2.2, Fig. 9(d), (i), (n) and (s) are the automatically generated tri-
map by the proposed method, and we can see that the regions where
the foreground color similar to the background color are labeled as
the unknown region (gray color). Fig. 9(e), (i), (o) and (t) are the seg-
mentation results of the proposed method, which show that the pro-
posed methods can correctly segment the players under complex
background and the regions where foreground color similar to the
background color. In our opinion, the player’s shadow is like the
blending results of background scene blended and a black color,
and it is difficult to segment if the blending ratio of the black color
is weak. Therefore, the shadow would only be complete removed
or preserved in the previous method like [15,17]. Different from bin-
ary segmentation results, the segmentation mask of matting results
is gray-level distribution. The brighter regions mean the larger
blending ratio of foreground object, and the darker regions mean
the less blending ratio of foreground object. Especially, the player’s
shadow in Fig. 9(f) lightly projects on the court. The shadow would
be removed in the binary segmentation methods but preserved in
our method. From Fig. 9(j), we can see that the gray-level mask can
accurately present the property of shadow. In addition, the shadow
can be removed from the segmentation results in Fig. 9(j) with set-
ting a threshold, e.g., 128. However, we do not quantize the seg-
mented results as the binary masks because the gray-level masks
not only show the blending property of foreground objects but also
bring more seamless pasting in the video rendering. As shown in
Fig. 11(b), (e), (g), (i), and (j), the gray-level masks of foreground ob-
jects make the video rendering with more natural visual effects.
4.2. Results of Structure

Structure is the property that shows the video events and pro-
vide a method of quickly browsing video content. Viewers can



Table 2
Results of event annotation.

Event Quantity Precision (%) Recall (%)

Ace 21 71.4 75.0
Fault or net 49 81.6 100
Double fault 9 100 100
Hit before net 97 85.6 90.2
Break point 31 100 100
Rally 335 96.7 95.9
Null 12 100 50.0

Total 554 93.1 93.1

Table 3
Results of pattern search.

Search pattern Quantity Precision (%) Recall (%)

e e c 26 92.0 88.5
e e c a 14 90.9 71.4
c c e 30 92.9 86.7
c c e a b 11 80.0 72.7
e e d d e 12 80.0 66.7

Total 93 89.3 80.6
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browse a game’s proceedings and watch the highlights using time-
based or event-based sorting. Moreover, the GUI of Tennis Video
2.0 in Fig. 10 provides a search function for play strategy. This
search function is different from general event searches, and gives
viewers the ability to search for a specific game strategy.

For event annotation, score information and hit position pat-
terns in Table 1 are important clues and provide high confidence
information. 554 Video Units are used as the experiments. The re-
sults of event annotation are shown in Table 2, where both the
average recall and precision rates are 93.1%. With regard to the
lower rates in the ace event, the lost detection of the hit moment
is the main factor that also induces the lower precision rate in a
null event. It is because the hitting sound is sometimes covered
by the audiences’ cheer or a broadcaster’s voice, which makes
the recognition more difficult. To improve annotation results, the
analysis of player gestures and ball trajectories may be the helpful
clues in the detection of hit moment.

With regard to the results of strategy search, five search pat-
terns randomly selected were employed for the evaluation. The
notations of search patterns are referenced to Fig. 5. For example,
search pattern (e e c a) is the hit pattern in Fig. 10. In Table 3,
the average precision rate is 89.3%, and the average recall rate is
80.6%. It can be observed that the recall rate is not high enough
due to the lost detection of hit moments. By adding player gesture
analysis and detection of ball trajectories [24,27], some missing or
error detection of hit moments would be reduced, and the search
results would also be better.
4.3. Results of Interactivity

Fig. 11 shows the experimental results of Interactivity. Fig. 11(a)
is the result of Score. The original score box on the lower left
screen is removed and replaced by a score painted on the court.
Using luminance and color adjustments, the score text is now more
seamless with the background court. Fig. 11(b) is the result of
Comment. Text comments from user input can be painted any-
where on the sprite plane, which brings an amazing visual effect.
Fig. 11(c) and (d) is the results of Advertisement in text and video
formats, respectively. We can observe that foreground objects are
vividly standing on the advertisement, and these insertions will
not interrupt game proceedings. With color blending and lumi-
nance adjustment, the insertion has a vivid and seamless visual ef-
fects. Fig. 11(e) and (f) is the results of Hit Time, and the players at
the previous hit time indexes are pasted. The player positions and
gestures at hit times can provide significant semantic information
Fig. 10. The graphical user interface of Tennis Video 2.0, which has three
properties: Structure, Interactivity, and Scalability to enrich the watching experi-
ence. Users can click the bottoms to enjoy the proposed functions and use double-
click on the court to search the play strategy.
to viewers. Viewers can watch the players in a difficult situation if
there is a long distance between adjacent hit time positions.
Fig. 11(g) is the result of Player Tracker and Continuous, and
the rendering view is focused on the player with pasting multiple
players. Moreover, the zooming effects are suitable to watch the
game videos on the smaller display screens. With such a zoom ef-
fect, it can provide more comfortable viewing quality. Fig. 11(h)
shows the result of Ball Tracker and Continuous. The rendering
view is focused on the ball trajectory, which brings more exciting
game experience and is also suitable for the watching on smaller
display screen. All the functions proposed in Section 3.1 can be
combined on the rendering flow, and Fig. 11(i) and (j) is the results
of function combination. This gives viewers a totally fresh experi-
ence when watching a game. Fig. 11(k) and (l) is the results of
Strategy, the window in the right-bottom of GUI in Fig. 10. The
coordinates of the players and the ball are illustrated on the court
map, and the statistic information of each Video Unit is also
presented.

In addition to photo results, more demo videos of Interactivity
are available on the website.3 It should be noted that all of the
above experiments represent real-time responses. The computa-
tion time of video rendering reaches a speed of 30 720 � 480 video
frames per second, which meets the real-time requirement, on a PC
with Pentium IV 3 GHz CPU.

4.4. Results of Scalability

The proposed scalable video in semantic domain is presented on
four levels in Fig. 7. As mentioned in Section 3.2, lower transmis-
sion bit rates are achieved by reducing video contents, but the vi-
deo quality is still maintained. The corresponding bit rate of video
transmission in each level is shown in Fig. 12. Contrary to the
method of compressing the whole video frame as seen in general
video encoders, the video frames of play shots are decomposed into
the background court and foreground objects. Then each compo-
nent is individually encoded and transmitted.

For the compression in Level 1, the background court is encoded
using Lossless JPEG [39], and the average compression rate is 6.453
times. In other words, a background court with a 1080 � 720 res-
olution in RGB format has a 362 KB file size. Notice that the sprite
3 http://media.ee.ntu.edu.tw/larry/tennis2/.

http://media.ee.ntu.edu.tw/larry/tennis2/


Fig. 11. Experimental results of Interactivity: (a–d) Insertion of Score and Advertisement. (e, f) Hit Time. (g) Ball Tracker with Continuous. (h) Player Tracker with Continuous.
(i, j) Function combinations. (k, l) Strategy display.

Video Unit
Play Shots Non-play Shots

Content
Scalable

Level 1
Bit Rates

Level 3
Bit Rates

Level 2
Bit Rates

Level 4
Bit Rates

261K Bits/Second 1230K Bits/Second 

261K Bits/Second 0 Bits/Second 

144K Bits/Second 0 Bits/Second 

5.76K Bits/Second 0 Bits/Second 

Fig. 12. The bit rates of video transmission on each level. The red bin at the
beginning is the transmission bit rate of the background court, and the blue bins are
the average bit rates for video contents. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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image is reused in the video, so the it only requires to be transmit-
ted once in the beginning as the red4 bin in Fig. 12. For the com-
pression of the foreground objects, all of the foreground objects
are encoded by the main profile of the H.264 video encoder
(JM15) [37], and the average bitrates are 261 K bits per second
4 For interpretation of color in Figs. 2–13, the reader is referred to the web version
of this article.
(bps). The non-play shots are also encoded by the main profile of
the H.264 video encoder (JM15), and the average bitrates are
1230 Kbps. We can see that the background reuse in the play shots
allows for lower bit rates in comparison with the bitrates of non-
play shots.

For the compression bitrates in Level 2, the background court
and foreground objects of the play shots are individually encoded
by the same method as Level 1. Due to the abandonment of non-
play shots, highlight replays are rendered from the play shots,
which do not require additional transmission data. The bit rates
in the time interval of the non-play shots are zero, but it requires
the additional cost of a buffer to store the contents of the play
shots. We can see that the abandonment of non-play shots has a
dramatic effect on bit rate reduction in comparison with Level 1.

For the compression bitrates in Level 3, the background court
and foreground objects are individually encoded similar to in Level
2, the difference being that the foreground objects only include the
ball and players. The average bit rate for the foreground objects is
only 144 Kbps, which is about half size required by Level 2.
Because of the abandonment of non-play shots, the bit rates of
the highlight replays are zero, the same as Level 2. We have
observed that the viewing quality in Level 3 is almost identical to
Level 2, even though the non-essential foreground objects were
abandoned.

For the compression bitrates in Level 4, only the position coor-
dinates of the ball and the players are transmitted. Instead of video
frames, the positions of the ball and players are displayed on the
court map. The data size of these coordinates is only 5.76 Kbps.
The statistic data during the time interval of non-play shots is re-
trieved from the coordinates of play shots. The total bit rate in Le-
vel 4 is extremely lower than other levels.

The comparisons of bitstream size and visual quality between
the Scalability and SVC are shown in Fig. 13. For SVC in spatial do-
main, the lower bitstream size is achieved by reducing the video
resolution, but the visual quality is declined from the smaller dis-
play regions. For SVC in temporal domain, the lower bitstream size
is achieved by reducing the frame rate, however the visual quality



SVC in 
Spatial Domain 

SVC in 
Temporal Domain 

SVC in 
PSNR Domain 

Proposed Scalability 
in Semantic Domain 

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 518 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 518 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 518 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 261 Kbps

Video resolution: 360x240
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 267 Kbps

Video resolution: 720x480
Frame rate: 7.5 fps
QP: 30
Objects: All
Bitrate: 267 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 40
Objects: All
Bitrate: 166 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 30
Objects: Players and ball
Bitrate: 144 Kbps

Video resolution: 180x120
Frame rate: 30 fps
QP: 30
Objects: All
Bitrate: 134 Kbps

Video resolution: 720x480
Frame rate: 2 fps
QP: 30
Objects: All
Bitrate: 188 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP: 50
Objects: All
Bitrate: 52 Kbps

Video resolution: 720x480
Frame rate: 30 fps
QP:
Objects: Animation
Bitrate: 5.76 Kbps

Fig. 13. The comparisons of bitstream size and visual quality of SVC in spatial, temporal, PSNR domain, and the proposed Scalability in semantic domain.
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is decreased from the discontinuous camera motion and player
postures. For SVC in PSNR domain, the lower bitstream size is
achieved by increasing the quantization parameters (QP), never-
theless the visual quality is declined from the blurred video. The
lower bitstream size of the proposed Scalability is achieved by
abandoning the contents in the priority of semantic importance,
and the visual quality can still be maintained. Notice that the ball
boy is disappeared in the second level of the proposed Scalability,
but people may not find it out in watching the game videos. We see
that the visual quality of the proposed Scalability is better than
SVC. For example, third level in spatial domain, third level in tem-
poral domain, second level in PSNR domain, and second level in the
proposed Scalability roughly have the same bitrate, and the visual
effect of the proposed Scalability is more acceptable. The demo vid-
eos are available on the website,5 which show the detailed visual
effects of the comparisons. Furthermore, we also employ the user
study to evaluate the performance between SVC and Scalability
in Section 4.5.
4.5. Subjective evaluation

For the evaluation by user study, we design a subjective evalu-
ation for 20 evaluators, who are the graduate students. Among the
evaluators, 10 have the habits in watching tennis videos, and the
others do not have the habits in watching tennis videos. Eleven
5 http://media.ee.ntu.edu.tw/larry/tennis2/.
questions are designed to evaluate the properties of Tennis Video
2.0.

For subjective evaluation of Structure, the evaluator is required
to browse game videos by Windows Media Player. After that, the
evaluator is required to browse game videos by the functions of
Structure and give the score (1–9) of satisfaction, ex: 1: Very unsat-
isfied, 3: Unsatisfied, 5: No difference, 7: Satisfied, 9: Very satisfied.

Questions about Structure:

Q1.1 Do you feel more convenient with the functions of Structure
in watching game videos?

Q1.2 Do you think the functions of Structure help you to experi-
ence this game?

Q1.3 Are you willing to watch game videos with the functions of
Structure?

For subjective evaluation of Interactivity, the evaluator is re-
quired to watch game videos by Windows Media Player. After that,
the evaluator is required to watch game videos by the functions of
Interactivity and required to give the score (1–9) of satisfaction, ex:
1: Very unsatisfied, 3: Unsatisfied, 5: No difference, 7: Satisfied, 9:
Very satisfied.

Questions about Interactivity:

Q2.1 Do you have more fun with the functions of Interactivity in
watching game videos?

Q2.2 Do you think the functions of Interactivity help you to have
more interaction in watching game videos?

http://media.ee.ntu.edu.tw/larry/tennis2/
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Fig. 14. Results of subjective evaluation. Blue bar is the average score of evaluators with habits in watching tennis videos, and green bar is the average score of evaluators
without habits in watching tennis videos. The black lines show the standard deviations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Q2.3 Are you willing to watch game videos with the functions of
Interactivity?

For subjective evaluation of Scalability, the evaluator is required
to watch the videos under bitstream reduction by SVC and the
functions of Scalability. Three questions are designed to evaluate
the visual quality, and the evaluators are required to give the score
(1–9) of satisfaction, ex: 1: Very unsatisfied, 3: Unsatisfied, 5: No
difference, 7: Satisfied, 9: Very satisfied.

Questions about Scalability:

Q3.1 Do you think the visual quality is more acceptable and game
information is clearer under bitstream reduction?

Q3.2 Do you think the functions of Scalability are more practical
solutions in the video broadcasting?

Q3.3 Are you willing to watch game videos with the functions of
Scalability?

For subjective evaluation of whole system of Tennis Video 2.0,
the evaluator is required to give the score (1–9) of Tennis Video
2.0. Questions about Tennis Video 2.0:

Q4.1 Do you think Tennis Video 2.0 is a new presentation of
sports videos and gives people better watching experience?

Q4.2 Are you willing to watch game videos with Tennis Video 2.0?

Fig. 14 shows the average scores and standard deviations of the
evaluation. For the results of Structure, the results show that eval-
uators identify the functions of Structure which bring more conve-
nience and help them to experience the game in watching the
videos. For the results of Interactivity, the evaluators are all iden-
tify the contribution from getting more fun and having more inter-
action with the game in watching the videos. For the results of
Scalability, the evaluators identify the visual quality of semantic
Scalability is more acceptable and the game information is clearer
than SVC. Furthermore, they think the proposed semantic Scalabil-
ity are more practical solutions than SVC in video broadcasting. In
the evaluation of whole system, the evaluators highly identify that
Tennis Video 2.0 is a new presentation of sports videos and give
people better viewing experience. In addition, they are willing to
watch the game videos using the functions of Tennis Video 2.0. Fi-
nally, there is another interesting phenomenon that the scores
from evaluators with habits are higher than the scores from evalu-
ators without habits. It seems that people, who often watch tennis
games, much identify the contributions of Tennis Video 2.0 and
prefer to have these functions.
5. Conclusions and future works

In this paper, a background generation with considering the
pixels in temporal and spatial distributions is proposed. Next, a
segmentation method combining automatic trimap generation
and matting model is proposed to separate the video contents into
layers. To provide more functions in watching videos, the render-
ing flow of video contents and the semantic Scalability are
proposed. With new video analysis and rendering tools, a new pre-
sentation method for sports videos is proposed with properties of
Structure, Interactivity, and Scalability. Structure is the property
that ensures video content is well annotated and provides people
a convenient way to watch what they want. Interactivity is the
property that gives people the ability to customize the video con-
tent and watch the enriched game videos. Scalability is the prop-
erty that enables video content to have different transmission bit
rates under different bandwidth limitations.

For the extension to broadcasting systems, Tennis Video 2.0 can
be implemented in two ways: game videos processed in broadcast-
ing servers and game videos processed in user clients. For game
videos processed in broadcasting servers, the computation of video
analysis is done in broadcasting servers, and users only receive the
extracted information. In other words, the broadcaster can employ
many computation units for real-time video analysis, and game
videos with extracted information are received in user clients,
which have real-time rendering ability. For game videos processed
in user clients, the personal computers, home servers, or set-up-
boxes are used for video analysis. Due to the lower computation
capability than the devices of the broadcasters, it may spend sev-
eral hours for one game video. Thus, users can enjoy the game vid-
eos only after the off-line computation is finished.

Finally, the proposed methods in the background scene genera-
tion and foreground objects segmentation not only effective to
tennis videos but also can be applied to other sports videos. The
proposed the methods in video rendering and the concepts of
Scalability in semantic domain can also be extended to other sports
videos. We think the properties of Tennis Video 2.0 can be pro-
moted to more sports videos, for example: Football Video 2.0 and
Baseball Video 2.0.
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