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Abstract—The advances of mobile computing and sensor
technology have turned the mobile devices into powerful
instruments. The integration of thermal and visual cameras
extends the capability of computer vision, due to the fact that
both images reveal different characteristics in images; however,
image alignment is a challenge. This paper proposes an effective
approach to align image pairs for event detection on mobile
through image recognition. We leverage thermal and visual
cameras as multi-modality sources for image recognition. By
analyzing the heat pattern, the proposed APP can identify
the heating sources and help users inspect their house heating
system; on the other hand, with applying image recognition,
the proposed APP furthermore can help field workers identify
the asset condition and provide the guidance to solve their
issues.
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I. INTRODUCTION

With the advance in sensor technology and mobile com-
puting capability, more and more emerging applications with
real-time processing can be implemented on mobile devices.
By combing thermal and visual cameras for event detection,
the mobile devices can turn into powerful instruments.

In this paper, we take thermal and visual cameras as the
multi-modality sources for heat source detection and asset
inspection based on image recognition. Figure 1 shows the
configuration of the mobile devices, including an external
camera connecting to a smartphone. The integration of the
multi-modality image sources is a challenge because the
thermal and visible images are captured from different cam-
eras, containing different information of the scene. The liter-
ature associated with thermal image applications and mutli-
modality image pair alignment in state-of-the-art is surveyed
in Section II. We propose the methods in Section III to align
the visible-visible images and thermal-visible images. By
leveraging the computation capability on mobile devices,
we propose the application with thermal pattern analysis
for heating source detection in Section IV to help users
inspect the mansion’s heating system. In Section V, we apply
thermal and visual cameras for image recognition to help
field workers identify the asset condition and provide the
guidance to solve their tasks.

Figure 1: Multi-modality camera sources integrated on the
mobile device.

We use FLIR ONE Personal Thermal Imager1 as the
external camera, which can capture thermal and visible
images with 240⇥320 resolution, and connects to the iOS
device equipped with a 4K resolution camera; therefore,
there are two visual cameras and one thermal camera in
our system.

II. RELATED WORKS

Gade and Mpeslund [1] comprehensively described the
applications based on thermal cameras and visual cameras.
Due to different characteristics in thermal images from
visible images, several applications based on single thermal
image have been proposed, such as heat distribution inspec-
tion [2], stability of heat source [3], pedestrian detection
and tracking [4], face recognition [5], blood pressure mea-
surement [6]. Nonetheless, due to the lack of texture and
low spatial resolution in thermal images, its capability is
confined. Therefore, researchers are towards the combination
of visible and thermal images.

Gade and Mpeslund [1] and Conaire et al. [7] also
pointed out the challenges in aligning and fusing thermal
and visible images. The basis in aligning and fusing images
is similar to aligning two visible images from different
viewpoints [8], that is, estimate the homography between
two images. Trivedi et al. [9] reported a heated chessboard
to calibrate cameras’ parameters, the corresponding corner
points of heated chessboard can be easily found via both

1http://www.flir.com/flirone/



thermal and visible images. Sonn et al. [10] developed a
fast image registration on thermal-visible image pairs, they
aligned two images at key-points level to ensure the corre-
spondences are matched. Irani and Anandan [11] proposed
a pyramid structure to align multiple sensor sources, they
roughly align images through global information and then
refine the results via local details. Wu et al. [12] matched
thermal-visible image pair via visual salient features that
are extracted according to the traits of thermal and visible
images, respectively.

III. THERMAL AND VISIBLE IMAGES ALIGNMENT

In this section, we propose the algorithm to compensate
image misalignment due to the images captured from var-
ious cameras. As shown in Figure 1, to align the thermal
image from external camera and the image captured by
the smartphone, our system has two alignment methods:
visible-visible image alignment and thermal-visible image
alignment. The visible-visible image alignment registers the
visible image captured by the external camera to the image
captured by the smartphone. The thermal-visible image
alignment registers the thermal image to the visible image
captured by the external camera.

A. Visible-Visible Image Alignment

The scene of this application is usually not in a plane
shape. If we use a global homography model to register
the images, the parallax issues may cause the alignment
not accurate. To provide better alignment, local homography
model is used to register the visible images.
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We denote the 9 ⇥ 1 vector in (5) as h. Since only two
rows of the 3⇥ 9 matrix in (5) are linearly independent, for
a set of N matching points {p̂i}N

i=1, and {p̂0
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where a
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i,2 correspond to the first two rows of the
matrix in (5). We also incorporate the constraint khk2 = 1

since the homographic transformation has only 8 degrees of
freedom.

In [13], authors introduced moving DLT framework to
estimate local homography by including locality-enforcing
weights in the objective of (6). The local homography at the
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which can be written in matrix form as
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The parameter � 2 [0 1] is the offset used to prevent
numerical issues.

In our method, we use the moving DLT without offset [14]
to estimate the local homography. This weighting scheme is
insensitive to parameter selections.

B. Thermal-Visible Image Alignment
The registration between the thermal and visible images

is presented in this subsection. Although these two cam-
eras provide different information of the scene, both edge
can provide boundary information of the same objects. To
register the thermal and visible images, the edge maps of
both images are extracted. Since the centers of the visible
and thermal cameras are at the same horizontal line and the
rotational parameters of both cameras are the same, the cor-
responded pixels have only horizontal movements between
the images. The horizontal displacements of the pixels can
be obtained by fitting the edge maps. Therefore, the finding
the displacement to fit the edge maps is formulated by the
following equation.
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Figure 2: Thermal-visible image alignments with various displacements.

Figure 3: Thermal videos captured around a mansion, where
the warmer color indicates higher temperature. (a) Lighting
source, (b) spot heating source, and (c) strip heating source.

x and y are image coordinates, and d

⇤ is displacement
that has the minimum difference of edge maps. Figure 2
shows an example of the thermal-visible image alignment.
By changing the displacement d, the thermal-visible image
alignment can fit to objects in different depth. In addition, the
horizontal displacements can be used to register the images
and create a depth map.

IV. APPLICATION: HEAT SOURCE AND PATTERN
DETECTION VIA MULTI-MODALITY VIDEO ANALYSIS

In this section, we apply the proposed multi-modality
video analysis, running on iOS devices with thermal camera,
to detect heat source and pattern. Here is a scenario: a person
would like to inspect heating system and understand the heat
distribution in every corner of his/her house. This APP is
capable of indicating heat source, analyzing heat pattern,
visualizing heat distribution on the fly in cooperation with
the installed visual and thermal camera. Figure 3 shows
the examples of captured thermal videos, the warmer color
indicates higher temperature.

To differentiate various heat patterns, we predefine four
common patterns with distinguishable traits; and then, apply
the proposed mobile framework to classify them into corre-
sponding class. Four patterns and their detection criteria are

Figure 4: Results of video analysis with heat gradient and
flow overlapped on the panorama. By touching the circled
number, a pop-up UI describes the details.

illustrated as follows:

• Lighting Source: A region with higher temperature
than its surroundings is detected, whose luminance
distribution on visible video frames is high as well.
The lighting source detection can be used to evaluate
the energy conversion efficiency by analyzing the ratio
of temperature and luminance values.

• Fire Source: A region with higher temperature than
its surroundings is detected, and the heat pattern is
changing quickly over a short period of time. The fire
source detection is critical to safety issues, especially
getting highlighted in digital home applications.

• Spot Heating Source: A region with higher temper-
ature than its surroundings is detected, whose distri-
bution like a circle and stable over a period of time,
and the luminance distribution on visible video frames
is not higher than its surroundings. The spot heating
detection is an important feature to prevent electrical



fire.
• Strip Heating Source: A region with higher temper-

ature than its surroundings is detected, whose distri-
bution like a strip and stable over a period of time,
and the luminance distribution on visible video frames
is not higher than its surroundings. The strip heating
source is common in house heating system like the hot
water flowing in the pipe. Users can use it to monitor
their home heating conditions.

In addition, if the heating source does not belong to one of
above patterns, it will be classified into other class. Figure 3
shows three different heating sources including lighting,
spot, and strip, from left to right.

Nonetheless, thermal images are usually visualized with
warm-cool color palette, which is not informative for most
people due to the shortage of visible texture. We build
a panorama from visible videos and overlap the detected
heating sources and patterns to ease the analysis.

Figure 4 shows the APP generates the panorama with
heating sources and patterns overlapped on it. The shapes
in orange color represent the patterns of heating source.
The color gradient within shapes represents heat gradient
in thermal video frames. The arrow length and direction
represent the magnitude and direction of heat gradient,
respectively. By touching the circled number, a pop-up UI
describes the evidences of detection results, and displays the
thermal image beyond the visible world. As a consequence,
users can easily inspect the pattern of heat source and check
the stability of heat source. A demo video is available on
the website 2.

In terms of thermal imaging accuracy, the temperature
measured from our thermal camera depends on a variety
of factors, including the distance from the object, the am-
bient temperature, and the emissivity of the material being
observed, etc. In our experiments, the measured temperature
would be inaccurate when measuring distance is longer than
3 meters.

V. APPLICATION: ASSET INSPECTION WITH
MULTI-MODALITY IMAGE RECOGNITION

We apply thermal and visible images as multi-modality
sources for asset inspection to provide immediate assistance
for field workers. Here is one scenario of applications: a field
worker has no idea to fix an asset because of the shortage
of experiences or the construction difficulty; however, com-
panies might have well-documented the solutions for those
issues. Hence, based on multi-modality image recognition,
our application will assists them in repairing the asset right
away through fast retrieving correct documents. Through
automatic model identification and issue identification, field
workers can retrieve precise instructions, which will be
overlapped on the captured image and illustrate the steps

2www.larrylai.tw/mobilethermal

field workers must perform to resolve the asset, to patch the
device.

We design the APP user interface (UI) is as shown in
Figure 5 (a) to make field workers work efficiently. The
table chart on the left panel lists all to-do tasks for the
field worker, and each task contains customer address, task
description, location, and fixing history of this asset are
displayed on the right panel. First of all, we detect the asset
model to indicate the instruction manual based on QRcode
or image recognition; and then, we search exact solution in
the manual for asset’s issues through comparing visual and
thermal conditions of asset with golden references built by
original manufacturers.

A. Asset Model Recognition
Field workers have two approaches in recognizing the as-

set model: (I) QRcode detection and (II) image recognition,
and field workers can select one of them at the UI shown in
Figure 5(a), where QRcode and Camera button both enable
the visual camera to detect asset model. QRcode detection
is intuitive and the detection result is usually convinced. We
deploy the QRcode detection in CoreImage on iOS platform,
which is a native iOS framework (equivalent to accelerated
by GPU on mobile device3. Once decoding the QRcode, the
APP can pop out the instruction manual for fixing the asset.

On the other hand, since QRcode label is not always
attached on every asset or it might be torn to result in un-
successful QRcode detection; therefore, using image recog-
nition to identify the asset model is a promising solution
in practical. In general, we can upload the captured image
to the cloud server for image recognition; however, field
workers sometimes do the job under the environment without
Internet access. Therefore, image recognition running on a
mobile device instead of cloud servers becomes an important
demand. Now, low computation capability of mobile devices
is one of major challenges for deploying image recog-
nition; therefore, to make image recognition perform on
mobile devices, we simplify the algorithm and leverage iOS
frameworks to reduce computation time [15]. The detailed
algorithm of image recognition on mobile is illustrated as
follows.

• To accelerate image feature extraction, we replace SIFT
feature extractor [15] with Harris corner detector [16].
Although the features detected be Harris corner detector
are not scale-invariant, we use a bounding box in the
UI to guide field workers in normalizing the asset size.
Furthermore, the Harris corner detector can be modified
into pixel-wise operations, and then, we can easily
realize it with OpenGL Shading Language4, which
automatically accelerates the processing by mobile de-
vice’s GPU.

3https://developer.apple.com/library/mac/documentation/
GraphicsImaging/Conceptual/CoreImaging/ci_intro/ci_intro.html

4https://en.wikipedia.org/wiki/GLSL



Figure 5: The APP UI for image recognition and visible image analysis. A pop-up UI shows the visible evidences to the
asset condition.

• After feature detection, we need to build image feature
sets via SIFT descriptor; however, the SIFT descriptor
takes lots of computations, especially for trigonometric
functions and square root functions. To reduce com-
putations, we adopt a look-up-table(LUT) mechanism,
which stores all results of complicated function in
building SIFT descriptors. Note that the designed LUT
preserves the precision and improves processing speed.

• Depending on applications, there are usually tens of
thousands of training images in the database, and it
results in feature matching takes major computation
time in whole process. To accelerate feature matching,
image color histogram is used as one of classifiers
to reduce matching candidates [17]. By adopting the
architecture of graph traversal, we can dramatically de-
crease the feature matching [18]. Note that all of image
feature sets are stored with CoreData5, the iOS SQL
framework, which provides an efficient data access.

After featuring matching, we can find the matching pairs
of feature points between the captured image and training
images in the database.

B. Asset Condition Check and Operation Inspection
With the perspective transform, we are able to get the

geometric mapping between the captured image and training
images. Figure 5(b) shows an example of asset condition
check, which exactly indicates the power light on the cable is
abnormal. To implement the function of condition check, we
build training images for each asset with different capturing
perspectives and manually label checkup points on each
training image. Note that the perspective transform can map

5https://developer.apple.com/library/prerelease/mac/documentation/
Cocoa/Reference/CoreData_ObjC/index.html

those checkup points on training images to the captured
image. Next, the image processing for condition check is
conducted on the captured image.

For the case in Figure 5(b), it analyzed the captured image
and found the cable’s power signal turned off. By comparing
to the asset conditions in training images, the cable power
signal should flash in green as a normal condition. Therefore,
the pop-up UI shows an image for the asset under normal
condition with green flashing light. Note that the criteria
for checking asset conditions are case-dependent. The asset
producer needs to define the checkup points, and then the
additional analysis for condition check should be cascaded
to our image recognition algorithm.

Once the asset model is recognized, the asset operation
temperature in default value can look up in local database or
pull down from cloud server. By inspecting the temperature
distribution, the APP can immediately identify if the asset is
currently running under normal condition. Figure 6(a) shows
a pop-up UI will come up when the APP detects the cable
temperature higher than the default settings. The pop-up UI
shows the recognition results and display thermal evidences,
which can help field workers quickly figure out this issue.
With touching the View Instructions in the bottom of the
pop-up UI, the instruction manual as shown in Figure 6(b)
will pop over to guide field workers to fixing the issue step-
by-step. A demo video is available on the website.6

VI. CONCLUSION

By integrating thermal and visual cameras on the mo-
bile device, novel and practical applications are presented
for event detection. To eliminate the influence of mis-
aligned image pairs, we proposed the visible-visible and

6www.larrylai.tw/mobilethermal



Figure 6: The APP UI for image recognition and thermal image analysis. A pop-up UI shows the thermal evidences to the
asset in operation and exhibits the instructions to fix this issue.

thermal-visible alignment to integrate multi-modality imag-
ing sources; therefore, we can achieve more precise event
detection. By analyzing the heat pattern, the proposed APP
can identify four heating sources and help users inspect
their house heating system; on the other hand, with applying
image recognition, the proposed APP can help field workers
identify the asset condition and guide them to solve their
issues.
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review,” Computer Vision and Image Understanding, vol. 97,
no. 1, pp. 103–135, jan 2005.

[6] “A Non-invasive Method for Measuring Blood Flow Rate in
Superficial Veins from a Single Thermal Image,” in 2013
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops. IEEE, jun 2013, pp. 354–359.

[7] C. O’Conaire, N. O’Connor, E. Cooke, and A. Smeaton,
“Comparison of Fusion Methods for Thermo-Visual Surveil-
lance Tracking,” in 2006 9th International Conference on
Information Fusion. IEEE, jul 2006, pp. 1–7.

[8] R. Hartley and A. Zisserman, Multiple view geometry in
computer vision. Cambridge university press, 2003.

[9] M. Trivedi, “Multiperspective Thermal IR and Video Arrays
for 3D Body Tracking and Driver Activity Analysis,” in 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Workshops, vol. 3. IEEE,
2005, pp. 3–3.

[10] S. Sonn, G.-A. Bilodeau, and P. Galinier, “Fast and Accurate
Registration of Visible and Infrared Videos,” in 2013 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops. IEEE, jun 2013, pp. 308–313.

[11] “Robust multi-sensor image alignment,” in Sixth International
Conference on Computer Vision (IEEE Cat. No.98CH36271).
Narosa Publishing House, 1998, pp. 959–966.

[12] F. Wu, B. Wang, X. Yi, M. Li, J. Hao, H. Qin, and H. Zhou,
“Visible and infrared image registration based on visual
salient features,” Journal of Electronic Imaging, vol. 24, no. 5,
p. 053017, sep 2015.

[13] J. Zaragoza, T.-J. Chin, Q.-H. Tran, M. S. Brown, and
D. Suter, “As-projective-as-possible image stitching with
moving dlt,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 36, no. 7, pp. 1285–1298, 2014.

[14] C.-C. Lin, S. U. Pankanti, K. N. Ramamurthy, and A. Y.
Aravkin, “Adaptive as-natural-as-possible image stitching,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 1155–1163.

[15] D. Lowe, “Distinctive image features from scale-invariant
keypoint,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[16] K. Mikolajczyk and C. Schmid, “Scale and affine invariant
interest point detectors,” International Journal of Computer
Vision, pp. 63–86, 2004.

[17] J.-H. Lai and S.-Y. Chien, “Baseball and tennis video annota-
tion with temporal structure decomposition,” in Proceedings
of IEEE International Workshop on Multimedia Signal Pro-
cessing, MMSP 2008, 2008, pp. 676–679.

[18] Y. Xia, J.-H. Lai, L. Nai, and C.-Y. Lin, “Concurrent image
query using local random walk with restart on large scale
graphs,” in Proceedings of IEEE International Conference on
Multimedia and Expo, ICME 2014, 2014, pp. 1–6.


