
Towards Balance-Affinity Tradeoff in Concurrent Subgraph Traversals

Yinglong Xia1, Lifeng Nai2, Jui-Hsin Lai1
1IBM Research, Yorktown Heights, NY 10598, USA

2Georgia Institute of Technology, Atlanta, GA 30332, USA
{yxia, larrylai}@us.ibm.com, lnai3@gatech.edu

Abstract—Graph technologies have been widely utilized for
building big data analytics systems. Since those systems are
typically wrapped as service providers in industry, it is critical
to handle concurrent queries at runtime by incorporating a
set of parallel processing units. In many cases, such queries
result in local subgraph traversals, which essentially require
an efficient scheduling scheme to explore the tradeoff between
the workload balance and the task affinity. In this paper, we
present an auction based approach for allocating concurrent
subgraph traversals onto the processors. A dynamic weighted
bipartite graph is built to model the affinity between subgraph
traversals and processors, and the workload of processors.
In particular, an edge between a task and a processor in
the bipartite graph represents that the data needed by this
task is likely cached by this processor. The task vertices and
edges are dynamically added or removed, and the heavier
edge weight represents stronger belief of the affinity. Besides,
the edge weight is also governed by the current workload of
the corresponding processor. We perform a parallel auction
algorithm to figure out a near-optimal assignment of the
subgraph traversal tasks onto the processors, which therefore
addresses both the workload balance and the task affinity. The
auction algorithm is performed incrementally, so as to capture
the changes of the bipartite graph structure. Our experiments
show the superior performance of the proposed method for
various real-world use cases based on concurrent subgraph
traversals.
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I. INTRODUCTION

Graph plays increasingly important roles in big data
analytics. First, a number of applications are explicitly based
on graphs, such as Twitter network, Facebook graph, and co-
authorship network [1][2]. Second, many analytical methods
model big data as a large scale graph with properties. For
example, in recommendation systems, we link customers to
the products that they purchased to analyze the similarity of
interest spaces of users [3]. The tasks defined on such big
graphs typically are variances of local subgraph traversals.
Therefore, graph technologies draw extremely high atten-
tions in several communities, such as data mining, machine
learning, social monitoring, and NoSQL databases [4].

It is fundamentally challenging to develop efficient graph
technologies for big graph problems, since it requires in-
sights of the underlying infrastructure. Nowadays, many
industrial platform vendors offer concurrency capability for
enterprise level big data solutions. For example, shared-
nothing/disk architecture is utilized for enabling multiple

database engines running in parallel on partitioned memory
spaces [5]. Such infrastructure motivates us to develop effi-
cient analytic solutions by fulfilling the following character-
istics: 1) Concurrency: In real big data systems, there are
typically a large set of queries arriving concurrently. They
should be distributed to a set of parallel processing units to
improve high throughput. 2) Affinity: Computations on
a big graph can be dependent. For example, if two subgraphs
are largely overlapped, traversing them on the same proces-
sor can result in improved data locality [1]. 3) Balance:
The overall execution time of concurrent tasks is determined
by the slowest process. Thus, we must ensure the workload
is approximatelybalanced across parallel processing units.

This paper explores the trade-off between task affinity
and workload balance in the scenario of concurrent local
subgraph traversals in a big graph. By big graph, I mean
either the number of vertices/edges is massive, or the amount
of property/attribute associated with each vertex/edge is
high. Given a big graph and a set of concurrent subgraph
traversal tasks, our goal is to assign these tasks to a set of
processing units, so that a task is assigned to a processing
unit where the corresponding subgraph data is fully or
partially cached by the processing unit; while the workload
is approximately balanced across all the processing units.
Note that new tasks keep on streaming in, thus the task
allocation must be dynamic and adaptive.

The contributions in this paper include:
• We propose a novel scheduling method for allocating

concurrent subgraph traversals in a large scale graph
onto a set of parallel processing units. The scheduling
method models affinity and workload balance using a
weighted dynamic bipartite graph.

• We leverage data locality-awareness by allocating sub-
graph traversal tasks to affinitive processing units, in
order to reduce the overhead caused by irregular data
access in many graph analytics.

• We address workload balance-awareness by schedul-
ing subgraph traversal tasks according to a dynamic
bipartite graph, which makes the busy processors less
attractive to new tasks while preserving the task affinity.

• We present an incremental parallel implementation of
auction algorithm for finding a match in a dynamic
bipartite graph. The edges selected by the match give
the task assignment.
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• We implemented the proposed methods and evaluated
the implementation using a series of representative
real-world applications involving concurrent subgraph
traversals on enterprise big data platforms.

The rest of the paper is organized as follows. We discuss
relevant background in Section II and present related work
in Section III. In Section IV, we model the graph data local-
ity and workload balance in concurrent subgraph traversal
using a weighted dynamic bipartite graph, followed by the
discussion on a parallel incremental auction algorithm in
Section V.The experiments are presented in Section VI and
Section VII concludes the paper.

II. BACKGROUND

A property graph can be denoted by G(V,E,Θ), where V
is the vertex set; E is the edge set and Θ = {θ|v → θv, v ∈
V } ∪ {θ′|e → θ′e, e ∈ E} represents the parameters associ-
ated with the vertices and/or edges, a.k.a. the property [2][4].
θ is typically a user-defined data structure which is usually
organized as a hash map θv = {mi → wi} with a property
name mi to a value wi. For different vertices/edges, the
property name set {mi}∀i can be identical or not, depending
on if the graph is schema or schemaless. For example, if a
vertex represents a user, then the properties can be the the
user’s ID, name, gender, affiliation, etc.

Graph traversal is the process of visiting all the vertices in
a graph from a given starting vertex in a particular manner,
updating and/or checking their parameters along the way.
In reality, many big graph analytics only need to traverse a
local subgraph, rather than the entire graph. This is known
as the local subgraph traversal.

Here are a few examples based on subgraph traversals,
some of which will be used for evaluating the proposed
method in this paper.
• SSSP with bounded length in undirected graph is a

simplified solution for finding a single source shortest
path (SSSP) between two vertices, say v and u, in
a given graph G, where only the paths with length
less than δ is concerned. This solution performs two
breadth-first search (BFS) from v and u, respectively,
each searching at most δ/2 hops away from the starting
vertex. Once the two BFSs meet at some vertex, a
shortest path is identified.

• Naive collaborative filtering for recommendation in a
customer-product graph. Given a product v purchased
by a set of customer U = Γv where Γ means the
directed neighbors, we find another product v′ and
U ′ = Γv′ . We recommend v′ to the customers with pur-
chase of v if sv,v′ = |Γv ∩ Γv′ |/min(|Γv|, |Γv′ |) > η,
where η is a threshold and sv,v′ is called the similarity
of the two products. Thus, collaborative filtering can be
based on BFS.

• Local search refinement/reranking in multimedia con-
structs a graph to represent a set of images [6] based

Figure 1: A sample shared-disk architecture

on their similarities. The similarity can be measured
by the scale invariant feature transform (SIFT). Given
an image v, a heuristic method is utilized to map v to
a vertex in the graph, say v′. Then, starting from v′,
we perform a local random walk with restart (RWR)
to find a better match v′′. The RWR allows a particle
to walk from v′ to u ∈ Γv′ at probability p = 1

Z
sv,u.

where s·,· is the similarity between two images and
Z = sv,v′ +

∑
u∈Γv′

sv,u is the normalizer.

It is worth noting that in a real system there is typically a
set of tasks involving subgraph traversal to be processed, and
the tasks keep on streaming in. For the sake of improving
system throughput, these tasks should be processed concur-
rently, using the parallel processing units in the platform.

Shared nothing (SN) architecture is prevalent in many data
warehousing and database spaces to handle concurrency.
Standard SN is a distributed computing architecture in
which each node is independent and self-sufficient. However,
since SN certainly takes longer to respond to queries that
involve joins over large data sets from different partitions,
many so-called SN systems are actually of the shared disk
architecture [5]. Such architecture is illustrated in Figure 1.
In our context, a big property graph is stored in a shared disk
across a set of parallel compute nodes, each having its own
CPUs and memory. A subgraph is loaded into a compute
node if it is required by a task allocated to this node. The
data access to local memory is much more efficient in terms
of latency than that to the shared disk.

The architectural characteristics of the above enterprise
big data processing platforms motivate us to explore schedul-
ing scheme for achieving high throughput in concurrent
graph processing. First, the subgraph traversal tasks must be
allocated to the computing units evenly, so that the workload
is balanced across the system. Second, due to the noticeable
overhead in accessing data on the shared disk, data locality
plays a critical role in graph traversal performance. If two
subgraphs are largely overlapped, the corresponding travesal
task should be allocated to the same processing unit. This is
called affinity in this paper. The optimal scheduling scheme
should maximize both the affinity and the workload balance.
Despite the optimization towards general workload balance
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or task affinity has been extensively studied, it is non-trivial
to combine them together appropriately for modeling graph
traversal problems.

III. RELATED WORK

There is a large body of literature on large scale graph
processing from various disciplines, ranging from the big
data analytic to high performance computing. Among var-
ious graph technologies, subgraph query and processing
become a critical component in several big data scenarios.
For example, Sun et. al. studied efficient subgraph match-
ing in graphs with a billion vertices [7], based on the
pipe-line join processing strategy and query optimization.
Although the proposed method was parallelized, the re-
source allocation and workload balance were not discussed.
Shao et. al. discussed subgraph listing in [8], but this work
addressed a different area. Instead of exploring various
subgraphs from a massive graph, it finds the occurrence of
a particular subgraph. This is similar to subgraph indexing
and matching discussed in [9]. Simmhan et. al. presented
a framework called GoFFish [1], which is basically a
subgraph-centric framework for large scale graph process-
ing. It advances the traditional vertex-centric graph pro-
cessing framework by processing each connected subgraph
using shared memory multithreading model; while enable
message passing across subgraphs. However, this framework
assumes subgraphs are disjoint, but in reality many con-
current queries visit partially overlapped subgraphs, which
results in affinity among subgraph traversals. In addition,
there are several graph computing frameworks or packages
which partially provide functionality on handling subgraph
traversals [2][4][10][11][12][13]. However, to the best of our
knowledge, none offers particular solution for addressing
both the workload balance and subgraph affinity simulta-
neously on real enterprise big data platforms.

Parallel graph runtime and scheduling techniques from
the perspective of HPC have been discussed in several
publications, such as [14]. In this area, subgraphs are
studied on distributed memory platforms [15], massively
multithreading architectures [16], and GPGPUs [17], where
the computations are often tuned for specific algorithms and
architectures [15]. For example, the Parallel Graph Library
(PGL) [18] offers diverse graph data abstractions, and can
express level-synchronous vertex-centric BSP and coarse-
grained algorithms over subgraphs, but the scheduling of
activities on these subgraphs has not been well discussed
yet. In addition, many of those techniques were discussed
in the context of OpenMP and MPI, which are different
from many enterprise level large data processing platforms
nowadays in industry.

As mentioned in Section II, shared-nothing(SN) and
shared-diskarchitectures are widely used in many enter-
prise level big data platforms for online transaction/analytic
processing (OLTP/OLAP). However, such an architecture

imposes severe challenges to graph computing, because of
the irregular data access patterns. Therefore, publications
of graph computing on SN architecture are quite limited.
Muntés-Mulero et. al. discussed a graph partitioning tech-
nique for whole graph traversal (i.e., BFS) using SN [19]. A
top-K aggregation over a large graph using SN is discussed
in [20]. Another work related to graph on SN architecture is
TriAD, a distributed RDF graph engine [21]. However, none
of the work addresses techniques on dynamic scheduling
schemes for subgraph traversals, no mention the tradeoff
between workload balance and task affinity.

We utilize a variant auction algorithm for subgraph
scheduling. Auction algorithm is essentially an optimiza-
tion method [22], typically offering rich parallel activities.
Early efforts on parallelizing auction algorithms assumed
a shared repository of all task prices [23]. Zavlanos et al.
proposed a MATLAB implementation of auction algorithms
using nearest neighbor agreement protocols [24]. Due to
the communication protocol and the overhead of MATLAB,
the implementation shows limited scalability. Sathe et al.
developed a parallel version of the auction algorithm on
Cray XE6, achieving encouraging performance for some
matrices [25]. However, their algorithm maintains a global
price list, which the Cray XE6 architecture can support
efficiently, but not a typical shared-nothing or shared-disk
architectures. Riedy and Demmel [26] seem to have the first
distributed implementation of the auction algorithm.

IV. CONCURRENT SUBGRAPH TRAVERSAL

A. Affinity in Subgraph Traversal

In a throughput-oriented system, a set of query requests
may arrive simultaneously. Each request provides a vertex,
which is used as the starting vertex of a local subgraph
traversal. As mentioned in Section II, by local traversal,
we mean the query visits vertices and edges within the
neighborhoods, say a few hops away from the starting vertex.
Note that in this paper the traversal can behave as a BFS, but
not necessarily visiting all the vertices, due to some user-
defined predicates on the vertex/edge properties or attributes.

Consider two queries with starting vertices close to each
other, such as the queries A and B shown in Figure 2.
When the two corresponding traversals are performed, there
are quite a few vertices being visited by both traversals.
Therefore, in terms of data locality, if query A has been
allocated to a processor, say p, we want to assign query B
to p as well. This is called the affinity between queries A
and B.

However, it is not convenient to calculate the mutual affin-
ity between all pairs of queries because of following reasons:
(1) Such calculation will result in O(N2) operations, given
N queries. This can be time consuming when N is high.
(2) The mutual affinity of all pairs does not explicitly give
us a clear way to schedule queries onto processors. It may
require additional clustering to form an allocation scheme.
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Figure 2: Subgraph affinity w.r.t. traversal

Figure 3: Score affinity between a subgraph traversal and a
processing unit using the list of recent visit signatures.

(3) The concurrent queries may keep on streaming in. The
above method is of limited capability to handle the dynamic
queries. Therefore, in this paper, instead of calculating the
affinity between every two subgraph traversals, we compute
the affinity between a subgraph traversal and a local pro-
cessing unit (i.e. a processor plus its local memory).

We claim that a subgraph traversal is affinitive to a
processor if some vertices in the subgraph have been recently
visited by the processor. More specifically, we track a graph
vertex v’s recent visitor history using a list of signatures
L(v) shown in Figure 3. In this design, there is a global
steady timer generating reference time stamps. Once a vertex
is being assigned to a processor, we update the signature
list by inserting a new pair of time stamp ti from the
global timer and the ID of the processor denoted by pj ,
i.e., L(v) ← L(v) ∪ (ti, pj). Since we are only concerned
about the recent visits, the list can be kept short, say 10
entries per vertex. Note that L(v) is naturally ordered by
time stamps. Thus, by browsing the list, we know which
processors recently touched V :

We formulate the subgraph-processor affinity scoring
function in two steps:

First, we model the affinity by ignoring the impact of
the visit time. To quantify the affinity between a subgraph
traversal and a processor, we use s′v→p to denote the affinity
score of allocating a subgraph traversal starting from v ∈ G
onto a processor p ∈ {0, 1, · · · , P −1}, which considers the
impact of data locality and caching characteristics:

s′v→p =
δv,p +

∑
u∈Γv

δu,p

1 + |Γv|
(1)

where δv,p is a variant Kronecker delta function that returns
1 if p ∈ L(v) is satisfied; otherwise, it returns 0. Γv is
the neighborhood of v. A larger neighborhood may further
improve the accuracy of scoring; however, in such a case
the scheduling itself results in a local traversal, although
there is no heavy graph property or attributes involved. Thus,
empirically, we only use the immediate neighbors of v for
Γv and we found it performs well.

Then, let’s impose the impact of time. Note that the
affinity is also governed by time. The cached data tend to
become expired after amount of time. We model this impact
using a shifted negative exponential function. The function
returns a coefficient between 0 and 1, which amends the
score calculated in Eq. 1. Therefore, the subgraph-processor
affinity score is estimated by:

sv→p =
(
e−α(t−tp)

)
· s′v→p (2)

where t is read from the global timer at the evaluation time;
tp is the latest time stamp when v was visited by processor
p. Parameter α controls the speed of the expiration:

α =
(np + n′t,tp) ·m

M
(3)

where np is the number of subgraphs allocated to processor
p, but not yet executed; n′t,tp is the number of subgraphs
traversed by processor p since time tp; m is the average
memory footprint taken by storing a subgraph and M is the
total size of the memory space available to processor p. The
rationale behind α is that, when the memory is saturated, a
newly loaded subgraph tends to swap out the earlier cached
subgraphs.

B. Affinity-based Scheduling

We allocate subgraph traversal tasks onto processors based
on the affinity scoring function defined in Eq. 2. In order to
illustrate the allocation method, we use a weighted bipartite
graph B(G,P, E,W ) shown in Figure 4 to represent the
relationship between subgraphs and processors, where G, P ,
E, W are the subgraph set, processing unit set, edges, and
the weights on edges, respectively.

Basically, there is a pool of concurrently arrived traversal
tasks to be assigned, which forms a set of vertices in the
bipartite graph B. The other set of vertices in B consists of
the available processing units, each with a task queue. For
G ∈ G and p ∈ P , we have edge (G, p) ∈ E if and only
if WG,p = sv→p > η, where v ∈ G is the starting vertex
for traversing G; sv→p is from Eq. 2 and η is a threshold
to skip low affinity scores. Edge (G, p) means G and p are
affinitive, so we can consider allocate G to p. The allocation
is iterative. In each iteration, a processor will be assigned
at most one subgraph, but we want to maximize the overall
affinity.

Therefore, the allocation can be defined as selecting a
subset of edges E′ ⊆ E from the bipartite graph B,
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Figure 4: Affinity and balance aware subgraph scheduling is
modeled by a dynamic weighted bipartite graph.

Figure 5: Model affinity-based subgraph scheduling as a
matrix permutation

so that no two edges incline to the same vertex. In the
meanwhile, the sum of the scores on the selected edges must
be maximized. E′ gives the allocation.

To formulate the above optimization, we represent bi-
partite graph B as a matrix S = {sv→p}, where each
row represents a subgraph and each column represents a
processor. The entry is the corresponding affinity. Selecting
a subset of edges with maximum overall affinity scores
is equivalent to find a permutation matrix P , so that it
maximizes the sum of the diagonal of the permuted matrix.
The sum of the diagonal is called the trace of the matrix,
denoted by tr(). This formulation is shown in Figure 5.

C. Incorporation with Workload Balance

Each processing unit may have a queue of subgraph
traversal tasks, as shown in Figure 3. To further improve
performance, we want to keep the workload approximately
balanced across the processors. This is espeically important
for real social networks where some vertices incline to a
large number of edges. Thus, given a starting vertex v, even
if a subgraph traversal Gv is affinitive to a heavily-loaded
processor p, that is, sv→p is high, we may want to allocate
Gv to an idle processor p′, if any.

We incorporate the workload of processors by weighting
the affinity scoring matrix S = {sv→p}, ∀v, p. Let wp

denote the workload of processor p ∈ {0, 1, · · · , P − 1},
measured by the number of subgraphs in the task queue. We
construct a reciprocal weight vector �w = ( 1

wi+ε̃
)i=0,··· ,P−1,

where ε̃ is a small positive number. We modify the S by:

A = S 	 (�wT�1) =

{
sv→p

wp + ε̃

}
∀v,p

(4)

where 	 is the matrix inner product operator and �1 =
(1, 1, · · · , 1)T . We refer A as the workload-aware affinity
matrix.

Based on the above discussion, We convert the above
formulation into a linear programming as follows:

max
P

tr(ATP ) (5)

s.t. P�1T = �1, PT�1 = �1, P ≥ 0,

According to the linear programming [27], the above con-
straints ensures P is a permutation matrix. By solving this
linear programming, P gives the scheduling scheme that
allocates subgraphs to processors.

V. PARALLEL INCREMENTAL AUCTION

A. Dual Optimization

Efficient subgraph traversal scheduling requires a fast
solution to Eq. 5. We solve the linear programming by con-
verting it into an auction problem. Among various solutions
to linear programming, the auction based approach usually
offers the richest parallelism.

A constraint linear programming problem in form of
Eq. 5 can be converted into a dual form. The auction
algorithm [22] for solving the maximum weight bipartite
matching problems solves the following dual form of the
primal linear program in Equation 5:

min
p,π

�1T p+�1Tπ (6)

s.t. �1pT + π�1T ≥ A,

where p = (p1, p2, · · · , pN )
T and π = (π1, π2, · · · , πN )

T

are the dual vectors.

B. Auction Process

The auction algorithm computes the dual variables
through an iterative auction process. Specifically, we view
each row i as a buyer and each column j as an object; aij
is the benefit of object j to buyer i; pj is the price of object
j (initialized to 0 at the very beginning); πi is the profit for
buyer i, defined as (aij − pj), in case object j is assigned
to i. The auction algorithm proceeds as follows: Each buyer
i bids for an adjacent object j that offers the highest profit,
i.e., maxj∈adj(i)(aij−pj). The bid is the difference between
the highest profit and the second highest profit. An object j
is assigned to the buyer offering the highest bid, say buyer
i. Thus, row i and column j are matched and price pj
is increased by the bid. Price increment makes an object
expensive for competitors, so that they can choose other
objects. The above steps are repeated for all unmatched rows
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until every row is matched or the matching does not change
any more.

The naive auction algorithm described above has a well
known defect; i.e., it can stagnate due to a price war [22].
When the highest and second highest profits are equal for
some buyer, the bid becomes 0 and the object price remains
unchanged. Therefore, two buyers can infinitely compete for
the same object without increasing its price. The object will
be alternately assigned to them and the auction will not
progress. To overcome this problem, a small positive scalar
ε is added to the price of an object once it is assigned to a
buyer.

The auction steps for subgraph scheduling are shown in
Algorithm 1. In each iteration, the subgraphs (i.e. rows
in Q) are processed. Lines 3–10 are the parallel auction
steps (for...pardo), in which each unallocated subgraph
traversal task i traverses its affinitive processors (i.e., the
adjacent columns in adj(i) ) simultaneously to find the best
processor j1 (the one offering the maximum profit aij − pj)
and the second best processor j2. The price vector �p is
updated accordingly in Line 9. Note that the new price
aij1 − aij2 + pj2 + ε is the sum of the old price, ε, and the
difference between the highest and second highest profits,
pj1 + ((aij1 − pj1) − (aij2 − pj2)), where (aij − pj) is
the profit for i when choosing j. If the chosen processor
was already allocated to another subgraph, then Lines 6–8
remove it from the matching result, i.e. the allocationM , and
put the previously matched subgraph i′ into Q′. The auction
algorithm terminates when M is unchanged (Line 12).

Algorithm 1 SUBGRAPH AUCTION

Input: Processing units P = {pj}j=0,··· ,P−1; subgraph
queries Q = {q0, q1, · · · , qk}, k ≤ |P |; Workload-aware
affinity matrix A = {aij}; minimum price increment ε

Output: allocation scheme M = {(qi, pj)}
1: repeat
2: Q′ ← ∅
3: for subgraph i ∈ Q pardo

{The best & 2nd best columns}
4: j1 ← argmax(aij − pj), ∀j ∈ adj(i)
5: j2 ← argmax(aij − pj), ∀j ∈ adj(i), j 
= j1

{Update matching and price}
6: if ∃i′ s.t. (i′, j1) ∈M then
7: M ←M\{(i′, j1)}, Q′ ← Q′ ∪ {i′}
8: end if
9: pj1 ← aij1 − aij2 + pj2 + ε, M ←M ∪ {(i, j1)}
10: end for
11: Q← Q′, W ′ =W ,W =

∑
(i,j)∈M aij

12: until |W −W ′| < η

Note that the auction steps in Algorithm 1 will assign at
most one subgraph to a processor. Thus, when the number

Figure 6: Complete flow of workload-aware affinity schedul-
ing of concurrent subgraph traversals

of concurrent subgraph traversal requests is high, we will
need to partition them into some segments, each consisting
at most P subgraph traversal tasks, where P is the number
of available processors. We must perform the above auction
for each segment.

C. Subgraph Traversal

Once a subgraph traversal task is allocated to a processor,
it can be performed locally. In our scenario, we consider
a task q consisting of a starting a vertex v, a upper bound
of local traversal depth h, some predicates/constraints θ to
match with the edge property or vertex property during
traversal. The subgraph traversal engine locates v and finds
its neighbors, and so on. During the traversal, if any ver-
tex/edge and/or its property is not cached in the memory yet,
it must be loaded immediately. The loading of properties and
checking them against θ can be much more time consuming
compared to the traversal of the local graph structure. This
is what we are particularly concerned about in many real
industry solutions

D. Complete Workflow

The complete workflow is shown in Figure 6. The whole
system runs as a service, receiving subgraph traversal query
tasks, which are streaming in all the time. According to the
number of available processors, it fetches the equal number
of tasks, if any, from the input stream. These tasks are then
fed into a component called workload-aware affinity matrix
constructor. The affinity matrix is constructed based on the
vertex signatures and the current workload of processors, as
shown in Eq. 4. The matrix is consumed by the auction-
based scheduler to compute the allocation of the resources
based on Algorithm 1. According to the allocation scheme,
the tasks are executed by a set of subgraph traversal engines
running on a shared-disk scalable architecture.

VI. EXPERIMENTS

We implemented the proposed solution for property sub-
graph traversal using C++ on top of the IBM System G
Native Store graph database [28] on a system with shared-
disk and partitioned processing units (CPUs and memories).
The code was compiled using g++ 4.7 with -O3 optimization
in RHEL Linux CentOS 6.3. The scheduler is running on
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Figure 7: ISVision human face image graph is built based on
the face SIFT similarities. It is partitioned into subgraphs.

an IBM BladeCenter with 4 Intel Xeon E7-4830 processors
running at 2.13 GHz and the memory size is 256 GB.
The scheduler and the property graph traversal engines
communicate through a set of sockets.
Experiment Datasets in our evaluations consist of:

(1) A real twitter interaction graph created from GNIP [29]
with 11,316,811 vertices and 85,331,846 edges, where each
vertex represents an user and each edge represents the
friendship/followership. The time stamp of retweets between
two vertices and user information are given as the edge
and vertex properties respectively. (2) A real-world image
reservoir provided by the ISVision Co. for the ICME’2014
Industry Grand Challenge [30] (see Figure 7), including
5978 photos and 24 videos from 336 persons. The corre-
sponding graph has 5978 vertices, 89,206 edges, and 45
partitions. An additional set of 1024 testing images was
taken from those persons for generating queries. The graph
of the face images were constructed according to the scale-
invariant feature transform (SIFT) similarity, a widely used
metric in multimedia. Thus, each vertex is an image and
the edges connect similar images. The graph is clustered
in preprocessing. When a query image comes, it is mapped
to some clusters and then invokes a local search for search
refinement. (3) A synthesized random graph with the same
vertex and edge numbers as previous twitter graph. The
property on the random graph conforms with that on the
twitter interaction graph. We take this random graph into
consideration because the twitter graph shows strong power
law characteristics, resulting in highly skewed distribution
of vertex degrees; while the random graph is much more
balanced.
Implementation Methodology has been discussed

in Section II. Basically, we evaluated three applications: For
the twitter graph and the random graph, (1) we investigated
the interaction within neighborhoods by performing BFS
traversals from given vertices; (2) we searched shortest path
between a pair of vertices (SSSP). For the image graph, (3)
we performed a local re-ranking on the image reservoir for
refining an image search. All the above applications involve
local subgraph traversals.

Baseline system in our experiments was following
a random scheduling method with a first-come-first-serve
(FCFS) based policy. In the baseline system, incoming
queries were allocated to a randomly selected free unit. If all
units were busy, an incoming query was then inserted into an
arbitrary unit’s query queue. In addition, each unit’s queued
queries were processed according to the FCFS order. In
general, incoming queries were distributed to multiple units
with a random scheduling method and FCFS processing
order was followed within each unit.
Throughput evaluation was performed through

the above three applications: BFS, SSSP, and image search,
using various number of partitioned processors, ranging from
1 to 64. When a single processor is used, there is no
workload balance issue. For each application we illustrate
in Figure 8 the throughput of a baseline method and that
of our proposed scheduling method, noted as baseline and
SCH. The experimental results show consistent scalability of
throughput as the number of processing units increases. The
deployment of our proposed method doesn’t compromise
the existing scalability of baseline system. This is because
the proposed scheduling method evenly distributes the work-
load with well considerations of workload distribution and
balance. Due to the balanced workload and the affinity-
based allocation, the performance is improved obviously
compared to the baseline methods. The throughput speedup
can achieve as high as 1.6x, 1.5x, 2.1x over the baseline
system for BFS, SSSP, and image search, respectively. From
the results, we can see that our proposed method archives
both great throughput and scalability.
Memory capacity sensitivity was considered

because the maximum allowed reuse distance of buffer data
largely relies on memory capacity. A small memory leads to
higher probability of swapping out history data and results
in more access to the shared disk. It can bring significant
performance loss. However, due to the increased latency, the
pressure to scheduling efficiency is relaxed. So, we were able
to run the auction based scheduling with smaller ε, which
leads to improved scheduling scheme. We utilized 64 pro-
cessing units and various sizes of memories, including 4GB,
8GB, 16GB, and unlimited. Note that although the physical
memory is of a fixed size, IBM System G graph store allows
us to configure the maximum memory footprint we want to
use for buffering the graph elements. When the graph data
is beyond the limit, earlier loaded graph data (subgraphs) is
swapped out according to a LRU-like replacement policy.
The results of memory capacity sensitivity are shown in
Figure 9. From the results, we can see that throughput
can be improved significantly with higher memory capacity.
Meanwhile, compared with the baseline system, our pro-
posed method shows much lower sensitivity of the increment
in memory capacity. For example, by allowing unlimited
memory capacity, the baseline system throughput can be
improved by over 100% in BFS and SSSP. However, the
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(b) SSSP
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(c) Image search

Figure 8: Throughput of BFS, SSSP, and image search w.r.t.
number of partitioned processors/memories

throughput of our proposed method achieves 80% of the
maximum throughput with only 8GB memory capacity. This
is in accordance our previous expectation. In our proposed
method, by utilizing the data locality between queries, new
queries have better chance to traverse mostly inside the
in-memory buffer. Therefore, disk accesses as well as the
buffer size requirements are reduced significantly. As shown,
when the memory size reaches 16GB, our method achieves
almost the same throughput as unlimited memory. So, the
observation supports our expectation described above.

Speedup over a single node was investigated to
demonstrate the scalability feature of our proposed method.
It usually gives users a straightforward sense regarding the
scalability of a parallel computing system. We selected the
BFS application mentioned above because of its represen-
tativeness and performed the concurrent subgraph traversal
with respect to different number of processors. The result is
shown in Figure 10 with a logarithmic scale. The curve in
the figure represents the speedup of the BFS application as
the number of processing units increases. A linear curve
is also included to represent the perfectly scalable case.
Since the memory is partitioned, some vertices have to be
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(c) Image Search

Figure 9: Illustration of memory capacity sensitivity on
various applications
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Figure 10: Speedup of concurrent subgraph traversal versus
sequential subgraph traversal

loaded into multiple units; besides, the shared disk may also
cause performance degradation when several processes ac-
cess the on-disk data simultaneously. Therefore, the speedup
is sublinear; however, as we can see from the figure, the
speedup will keep increasing if we have more processing
units available, which exhibits the excellent salability of the
underlying system.
Impact of input graph topology was exam-

ined in our experiments to show the performance of the
concurrent subgraph traversal applications with respect to
a social graph with strong power law characteristic and a
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(b) SSSP

Figure 11: Impact of input graph topological types on its
throughput of concurrent subgraph traversal

random graph with approximately even distribution of vertex
degrees. The twitter interaction graph is a typical social
graph where a few celebrity vertices have a large amount
of inclined edges. We compared the performance using
the twitter interaction graph and that using a synthesized
random graph with evenly distribution of vertex degrees. The
throughput of the two is shown in Figure 11. According to
the experimental results, we can see that the throughput on
the random graph is lower compared with the throughput
on the twitter graph. This is caused by the topological
difference between the two graphs. In the twitter graph, the
local neighborhoods with high edge density make subgraph
traversals have better chance to access visited vertices. In
this case, it may traverse more edges when loading the
same amount of vertices. Therefore, both baseline system
and our proposed method show better throughput with
twitter graph. In constrast, the random graph incorporate
heavier requirements for vertex loading, which results in a
much higher sensitivity of data affinity. Thus, the results
in Figure 11 also show a better improvement over baseline
system when using random graph.

Performance improvement of our proposed
method is summarized in Figure 12. As shown, the
throughput improvement of BFS can reach as high as
51.9% with 64 processors. Similarly, the SSSP application
can also reach 50% improvement. Even in the worse case,
48% and 46% improvements were achieved respectively.
The throughput improvement of image search application
is much more significant. On average, a more than 2x
throughput is shown by applying our proposed method. This
is because of the a special feature of image graph: In the
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Figure 12: Improvement of proposed method over baseline
system

twitter graph, both vertex and edge properties are usually
some small-sized meta data. However, the image graph
attaches photo data to each vertex, leading to extremely
large vertex properties. In this case, the performance penalty
of loading vertices from disk storage is no longer reading
small meta data, but loading large size photo data and
also performing some image preprocessing. By applying
our proposed method, the vertex loading operations were
significantly reduced. Therefore, the reduced operations
result in a huge throughput gain accordingly.

VII. CONCLUSION

We addressed concurrent subgraph traversals in a large-
scale property graph on industrial big data processing in-
frastructure for enterprise level operational analysis. The
architectural characteristics of such infrastructure such as
the shared-disk design lead to extremely high necessity
on exploring the workload balance across processors with
partitioned memory, and the task affinity based on data
locality. Therefore, we proposed a new method to model
the affinity and workload balance using a dynamic weighted
bipartite graph. A variant auction algorithm is implemented
to find optimal solutions for allocating a subgraph traversal
task onto a processor. We parallelized the auction based
scheduling method and conducted experiments on shared-
nothing/shared-disk platforms. We showed the impact of
various factors on the overall performance of concurrent
subgraph traversals and illustrated the potentials of the
proposed method on real enterprise level big data platforms
using real datasets. In future, we would like to explore
machine learning based approaches to optimizing the auction
processing by finding an adaptive minimum price increment
ε. We would also like to explore the distributed scheduling
schemes for other enterprise level big data platforms.
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