
STABLE POSE ESTIMATION WITH A MOTION MODEL IN REAL-TIME APPLICATION

Po-Chen Wu1, Jui-Hsin Lai2, Ja-Ling Wu2, Shao-Yi Chien1

1Media IC and System Lab
Graduate Institute of Electronics Engineering and Dept. of Electrical Engineering

2Communications and Multimedia Lab
Graduate Institute of Networking and Multimedia and Dept. of Computer Science and Information Eng.

National Taiwan University
pcwu@media.ee.ntu.edu.tw, {larrylai, wjl}@cmlab.csie.ntu.edu.tw, sychien@cc.ee.ntu.edu.tw

ABSTRACT

Estimation of a object pose from camera is a well-developing

topic in computer vision. In theory, the pose from a calibrated

camera can be uniquely determined. But in practice, most

of the real-time pose estimation algorithms suffer from pose

ambiguity due to low accuracy of the target object. We

think that pose ambiguity—two distinct local minima of the

according error function—exist because of the phenomenon

of geometric illusions. Both of the ambiguous poses are

plausible. After obtaining the solution of two minima (pose

candidates), we develop a real-time algorithm for stable pose

estimation of a target objects with a motion model. In the

experimental results, the proposed algorithm diminish the

significance of pose jumping and pose jittering effectively.

To the best of our knowledge, this is the first work to solve

the pose ambiguity problem with motion model in real-time

application.

Index Terms— Pose estimation, pose ambiguity, pose

stabilization.

1. INTRODUCTION

The target of pose estimation is to calculate position and ori-

entation of target object from a calibrated camera. Augment-

ed reality (AR) [1], which synthetic objects are inserted into

a real scene in real-time, is a prime candidate system for this

topic. After obtaining the pose computed with some geomet-

ric information, the system could render computer generated

images (CGI) according to the pose on the display. ARToolkit

[2], for example, is such a system for AR application and have

been widely used. The target object in AR system is usually

the planar fiducial marker , which used for navigation and

localization frequently.

The information available for solving the pose estimation

problem is usually a set of point correspondences. They are

composed of a 3D reference point expressed in object coor-

dinates and its 2D projection expressed in image coordinates.

Fig. 1. Illustration of pose ambiguity. It is a geometric

illusion: There seems to be more than one 3D geometrical

explanations obtained from the same perspective projected

marker on the image plane.

Using object space collinearity error, Lu et al. [3] derived

an iterative algorithm which directly computes orthogonal

rotation matrices. Instead of using iterative algorithm, Ansar

et al. [4] developed a framework which allows for a set of

linear solutions to the pose estimation problem, and it’s for

both points and lines. These online pose estimation works

calculated the unique pose for each frame without considering

the pose ambiguity problem.

Pose ambiguity, as shown in Fig. 1, is the main cause of

pose jumping. The derived pose would be random one of the

ambiguous poses frame by frame, and it causes pose jumping.

From our experiences, several state-of-the-art pose algorithms

suffer from pose jumping. These pose ambiguity problems

have been discussed by previous works [5], [6]. Oberkampf

et al. [5] give a straightforward interpretation for the case

of orthographic projection. They develop their algorithm for

planar targets, which uses scaled orthographic projection at

each iteration step. Schweighofer et al. [6] extended to tackle

the general case of perspective projection and develop algo-

rithm for a unique solution to pose estimation. But even with

these algorithms, the problem of pose jumping still appears

occasionally.

In order to reduce the significance of pose jumping, we

propose an algorithm to derive the pose of target object

with motion model. The motion model will update through
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Kalman filter [7]. The Kalman filter provides an efficient

computational means to estimate the true poses with com-

puting a weighted average of the measured pose and the

predicted pose from motion model. From our observation,

one of the two ambiguous poses with distinct local minima

of error function are the correct one. So every time obtaining

the two ambiguous poses, we would choose the pose which

is more similar to the predicted pose. If the predicted pose

is realistic, then we can almost ensure that the chosen pose is

the proper one.

The main contributions of this work are shown as follows,

1. We can solve the problem of pose jumping effectively

since we consider the proper pose from two ambiguous

poses with motion model.

2. The significance of pose jittering will be reduced be-

cause of using Kalman filter. We can estimated the pose

that tend to be closer to the true pose than the measured

pose. The sequences of estimated poses would be

also much smoother because the poses are much more

consistent with their previous ones.

3. This is the first work of pose estimation combined with

motion model. Even if the target object is miss-detected

in some frames of long sequence, we can just use the

predicted pose with motion model as the final pose to

prevent from discontinues sequence of poses.

The remainder of this article is organized as follows.

First, we describe the formulation of the pose estimation

problem more formally in Sec. 2. Then we interpret the

pose ambibuity and show how to develop the two poses with

local minima of the according error function in Sec. 3. In

Sec. 4, we describe the details of our stable pose estimation

algorithm. In Sec. 5, we show the results of pose estimation

and compare the performance with other competitive pose

algorithms, and conclusions are drawn in Sec. 6.

2. PROBLEM FORMULATION

The main problem of camera pose estimation is to find out

the six degrees of freedom, which are parameterized by the

orientation and the position of the target object with respect

to a calibrated camera (with known interior parameters), as

shown in Fig. 2. Given a set of noncollinear 3D coordinates

of reference points pi = (xi, yi, zi)
t, i = i, ..., n, n ≥ 3

expressed in an object-space coordinates and a set of camera-

space coordinates qi = (x′
i, y

′
i, z

′
i)

t, the transformation be-

tween them can be formulated as:

qi = Rpi + t, (1)

where

R =

⎛
⎝rt1
rt2
rt3

⎞
⎠ ∈ SO(3) and t =

⎛
⎝tx
ty
tz

⎞
⎠ ∈ R(3) (2)

XX’ 

Y’ 
Z’ 

Z X 
Y camera coordinate  system 
object coordinate system 

Normalized Image Plane 

pi: (x, y, z) 
vi:(u, v, 1) 

R,t 

z’  = 1 

Fig. 2. The coordinate systems between camera and target

objects in the pose estimation problem.

are a rotation matrix and a translation vector, respectively.

We introduce the normalized image plane located at z′ =
1 as the camera reference frame. In such a normalized image

plane, we define the image point vi = (ui, vi, 1)
t to be the

projection of pi on it. Under the idealized pinhole camera

model, vi, qi and the center of projection are collinear. We

can express this relationship by the following equation:

ui =
rt1pi + tx
rt3pi + tz

, vi =
rt2pi + ty
rt3pi + tz

. (3)

Given the observed image points v̂i = (ûi, v̂i, 1)
t, the pose

estimation algorithm has to find values for R and t that

minimize an according error function. In principle, there are

two choices, image-space error, as used by [5],

Eis(R, t) =
n∑

i=1

[
(ûi − rt1pi+tx

rt3pi+tz
)2 + (v̂i − rt2pi+ty

rt3pi+tz
)2
]

(4)

and object-space error, as used by [3], [6],

Eos(R, t) =

n∑
i=1

∥∥(I − V̂i)(Rpi + t)
∥∥2 , V̂i =

v̂iv̂
t
i

v̂t
iv̂i

. (5)

The Eis is more heuristic, but the Eos is easier to param-

eterize, and we derive results for Eos in the remainder of this

paper.

3. POSE AMBIGUITY INTERPRETATION

Pose ambiguity denotes situations where the error function

have several local minima for a given configuration. The

cause of pose ambiguity is the low accuracy of the reference

points extraction, and it’s almost inevitable in general cases.

Fig. 1. shows the illustration of pose ambiguity.

Most of recent pose estimation algorithms working in

real-time suffer from pose ambiguity. Schweighofer et al. [6]

found that in the case which coplanar points pi = (pix , piy , 0)
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Fig. 3. The transformed coordinate system.

viewed by a perspective camera, it typically delivers two

distinct minima according to Eis and Eos. And we derive

the two poses with minima of Eos by method mentioned in

[6].

3.1. Derivation of Poses With Local Minima

Begin with a known pose (R1, t1) got from any pose estima-

tion algorithm, which the iterative algorithm proposed by [3]

had been used in our experiences. Then use this first guess of

pose to estimate a second pose, which also has a minimum of

Eos.

Assume reference points pi. which are measured in the

image as v̂i such that

v̂i ≈ vi ∝ R1pi + t1, (6)

Multiply both sides of (6) with Rt to get a transformed system

such that Rtt1 = [0 0 ‖t1‖]t (see Fig. 3). Let

ṽi = Rtv̂i, R̃ = RtR1, t̃ = Rtt1, (7)

and the pose (R̃, t̃) minimizes

Eos(R̃, t̃) =
n∑

i=1

∥∥(I − Ṽi)(R̃pi + t̃)
∥∥2 . (8)

Here we introduce a rotation matrix R̃z to let (8) be

Eos(R̃, t̃) =
n∑

i=1

∥∥∥∥∥∥(I − Ṽi)(R̃ R̃zR̃
−1
z︸ ︷︷ ︸

I

pi + t̃)

∥∥∥∥∥∥
2

, (9)

where rotation matrix R̃−1
z rotates the planar model pi only

about its z-axis. The rotation matrix R̃R̃z can be decom-

posed into the product of three rotation matrices R̃R̃z =
Rz(γ̃1)Ry(β̃1)Rx(α̃1), where Ri(φ) describes a rotation of

φ degrees about axis i. By selecting R̃z such that α̃1 = 0, we

obtain another transformed system

ṽi ≈ Rz(γ̃)Ry(β̃)p̃i + t̃ (10)
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Fig. 4. The object-space errors Eos from a sequence video

with a planar target. The pose which has the lowest error Eos

(the dark plot) is the final pose in each frame [6].

with the corresponding error function

Eos(β̃, γ̃, t̃) =

n∑
i=1

∥∥(I − Ṽi)(Rz(γ̃)Ry(β̃)p̃i + t̃)
∥∥2 .

(11)

Since t̃ = [0 0 ‖t1‖]t known from (7), we can rewrite (10) as

ṽi ≈ Rz(γ̃)(Ry(β̃)p̃i + t̃) (12)

because Rz(γ̃)t̃ = t̃1. Thus, Rz(γ̃) is a rotation just around

the optical axis (z-axis) of the camera. This rotation leaves

the geometric relation between image plane and model plane

invariant and just affects image coordinates. Thus, we can just

fix γ̃ = γ̃1 and search for local minima of Eos with respect to

β̃ [3], [6].

4. STABLE POSE ESTIMATION ALGORITHM

After obtaining the poses with local minima, some previous

work decided the final pose which has the lowest error Eos

[6], as shown in Fig. 4. Unfortunately, it still suffers from

pose ambiguity even when choosing the optimal solution for

Eos. In fact, the correct pose P̂ doesn’t consist with the

pose with lowest error. From our experimental evidence,

we deemed the second pose would be the correct one when

pose jumping occurs. The result of Fig. 5 consists with

our assumption: The two poses with local minima exchange

sometimes and one of the them is correct. Based on this ob-

servations, we develop our Stable Pose Estimation Algorithm.

In each time step, the system would generate a predicted

pose P̃ according to a motion model. This motion model

simulates the orientation of the pose in real condition and

updates through Kalman filter in each time step. We choose

the pose which is more similar to P̃ from two candidates as

the correct pose P̂ . The final pose is the weighted average of

the predicted pose P̃ and the measured pose P̂ .
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Fig. 5. The rotation angle about X-axis, Y-axis, and Z-

axis of the poses with minimum error Eos. The value will

dramatically changed during some frames.

4.1. Motion Model

Assume the motion model of pose rotation about three axes

X, Y, and Z are identical, so here we just discuss the case

of rotation about X-axis in the remainder of this paper. The

cases of rotation about Y-axis and Z-axis are all the same.

To estimate the following rotation angle with a motion

model, the motion model should maintain the current angle

value and angular velocity. The angle value and angular

velocity re described by the linear state space xk = [x ẋ]t,
where ẋ is the angular velocity. Assume that between the

(k − 1) and k time step the system undergoes a constant

angular acceleration of ak, which is normally distributed

with mean 0 and deviation σa, through Δt seconds. From

Newton’s laws of motion we conclude that

xk = Fxk−1 +Gak, (13)

where

F =

[
1 Δt
0 1

]
and G =

[
Δt2

2
Δt

]
. (14)

We rewrite (13) into another form:

xk = Fxk−1 +wk, (15)

ොܠ = ۾ ିଵܠ۴ = ିଵ۴  ௧۾۴ +   ۿ
ܡ = ܕ − ܁ ොܠ۶ = ۶௧۾۶ + ۹  ܀ = ܠ ିଵ܁۶௧۾ = ොܠ + ۹ܡ ۾ = ܫ) − ۹۶)۾ 

Predict Update 

Fig. 6. The detail operations in two phases, “Predict” and

“Update” of Kalman filter.
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Fig. 7. The system flow of stable pose estimation algorithm.

where

wk ∼ N(0,Q) and Q = GGtσ2
a =

[
Δt4

4
Δt3

2
Δt3

2 Δt2

]
σ2
a.

(16)

For each time step, we obtain measurements of the rota-

tion angle about X-axis. Let’s suppose the measurement noise

vk is also normally distributed with mean 0 and standard

deviation σz:

mk = Hxk + vk, (17)

where

H = [1 0] and vk ∼ N(0,R), R = vkv
t
k = σ2

z . (18)

4.2. Predict and Update through Kalman Filter

The operations in two phases of Kalman filter, “Predict” and

“Update” are shown in Fig.(6). Because of the pose ambigui-

ty, we’ll obtain two measurements, m̂k1 and m̂k2 of the pose

in real condition at each time step. Assume that the priori

state estimate x̂k is very authentic, then we’ll check which

measurements is more consistent with x̂k and thus regard it

as the only measurement mk. After operations of Kalman

filter, we can get a new posteriori state estimate xk, which

can be used in the next recursion.

To guarantee that the state estimate is reliable at each time

step, we have to make sure the state estimate is authentic
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Fig. 9. Comparison of the rotation angle about X-axis, Y-axis,

and Z-axis of the poses.

in the beginning. From our experiences, the planar target

almost faces upwards in any initial condition, which means

the rotation angle of X-axis θx is larger than 0, as shown

in Fig. 5. Based on this assumption, we choose the first

measurement m0 with larger θx than the other. Fig. 7 shows

the processing flow of the proposed stable pose estimation

algorithm. Finally, we use first element of xk to be the output

value of pose estimation instead.

5. EXPERIMENTAL RESULTS

In this section, we will discuss about the setting of param-

eters and show the results of pose estimation. Some video

sequences of markers with random rotation angles from the

camera are used as the test data. According to the marker

pattern in the database provided by [8], we could find the

set of point correspondences between object space and image

plane as pi and v̂i in Sec.2. Then we calculated the pose of

the planar marker from camera with the set of point corre-

spondences by proposed algorithm and other state-of-the-art

algorithms.

5.1. Parameter Settings

The state estimate and estimate covariance matrix, x0 and P0,

were initialized as following:

x0 =

[
m0

0

]
and P0

[
L 0
0 L

]
, (19)

where L is a value determined by the variance of the initial

state. Larger L means that the initial state estimate is very

unreliable and the true value tends to be closer to the mea-

surements. Here we set L = 10 in our initial condition.

The other parameters of the motion model in Sec.4.1 to be

determined are the deviation of the motion acceleration σa,

and deviation of the measurement noise σz . Larger σa means

the model has a dramatic acceleration motion, and small

σz means the measurements are much trustworthy. These

two parameters are chosen empirically, where σ2
a = 1000,

σ2
z = 2. The experimental results below are generated by

these parameters.

5.2. Pose Estimation Result Comparison

We recorded video sequences of a marker which has random

rotation angle from the camera. Fig. 8 shows the pose

estimation results which are compared with state-of-the-art

algorithms. In every condition and every time step, our

algorithm provides a solution for real-time pose estimation

with high stability. The first row in Fig. 8 is the continues

raw image sequences with marker. The second and third rows

are resulted by other algorithms, and the forth row are results

by our proposed algorithm. Even with low resolution and

noisy images, we can still derive a pose sequences without

pose jumping, and it is such a difference from others.

Fig. 9 shows the rotation angle of the marker from

camera. When the pose jumps during the video sequences,

the value of rotation angle would vary dramatically. The most

obvious example is the first chart in Fig. 9. With the proposed

algorithm, we can almost avoid the situation of pose jumping.

Furthermore, the pose would be much more stable with

maintaining a motion model. People would feel more com-

fortable if the differential values of rotation angles between

two continuous frames about each axis are as small as pos-

sible. And pose jittering means that the differential values

during video sequences are unsettled. Fig. 9 depicts the

pose sequences derived by by our algorithm are much more

stable with smaller difference between frames. We have also

applied some temporal filters to the other two methods trying

to diminish the effects of pose jittering, but the final pose

would be badly affected by the ambiguous poses nearby.
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Fig. 8. Pose estimation result comparison. The first raw is the original continues video sequence with a fiducial marker. The

second and third raws are the pose estimation results with a CGI of Kato et al. [2] and Schweighofer et al. [6]. The last raw is

the results of our algorithm.

6. CONCLUSION

In this work, we propose a stable pose estimation algorithm

for real-time application. The proposed concept of motion

model can not only be used with proposed algorithm, but oth-

er pose estimation algorithms. By this way, the significance

of pose jittering can be diminished dramatically. We can even

predict the correct pose from two candidate ambiguous poses

with the motion model, so the problem of pose jumping can

be solved effectively.

To the best of our knowledge, this is the first work which

combines pose estimation algorithm with motion model. Be-

cause lots of the applications of pose estimation are processed

in video form, so we cannot derive the pose with considering

information just from one frame. With the implementation of

the Kalman filter, the derived pose in each time step would

be more consistent with the previous ones. And users of

these applications will feel more comfortable with the much

smoother pose sequences.
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