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ABSTRACT

Spectral graph methods are widely employed in image seg-

mentation, and they exhibit excellent performance. However,

for high-resolution images, it is impractical to directly calcu-

late the eigenvectors of the affinity matrix owing to the high

computational requirements. The Nyström method provides

an efficient way to approximate the large-scale affinity matrix

by low-rank approximation. In the machine learning field,

previous studies have mainly focused on less data points with

high dimensional features. To the best of our knowledge, this

is the first study to discuss the performance of sampling meth-

ods for Nyström approximation, in which we focus on the

pixel-wise affinity matrix for a single image. In this paper,

we propose a mean-shift segmentation-based Nyström sam-

pling technique for image analysis. The experimental result-

s show that for images with simple compositions and back-

grounds, k-means sampling performs better, whereas for im-

ages with more complicated compositions and backgrounds,

the proposed method can perform better.

Index Terms— Nyström approximation, spectral graph

theory, image segmentation, mean-shift, diffusion map

1. INTRODUCTION

Spectral properties (eigenvectors and eigenvalues) play an im-

portant role in image analysis, especially in image segmenta-

tion and partitioning. Several studies have employed a pixel-

wise affinity matrix to implement image segmentation[1][2];

however, for a high-resolution image, finding eigenvectors be-

comes a computation-intensive task because the size of the

affinity matrix is large. Therefore, Fowlkes et al. [3] used

the solution of an integral eigenvalue problem known as the

Nyström method to approximate the eigenvectors for a large-

scale affinity matrix. The Nyström method is a low-rank ma-

trix approximation technique that samples only a small subset

of pixels, and then, extends the solution of the subset to the

entire image. This method can effectively reduce the com-

putation and memory requirements, thereby facilitating the

computation for a large-scale image.

The pre-processing procedure, which selects the sampling

points, may have a significant effect on the performance of the

approximation. Fowlkes et al. [3] used random sampling to

accelerate spectral clustering. In [3], a cross-validation study

verified the repeatability of 4 leading eigenvectors. However,

high repeatability does not guarantee that the error resulting

from approximation will be small. The errors occurring in the

of Nyström method for an affinity matrix require further in-

vestigation. Zhang et al. [4] showed that k-means clustering

is an effective sampling method because it can result in a s-

maller error upper bound. Kumar et al. [5] suggested that uni-

form sampling without replacement produces more effective

approximations. In this paper, we show a further comparison

of different sampling methods for a pixel-wise affinity matrix.

Image segmentation is a typical application of a pixel-

wise affinity matrix and spectral graph analysis. Shi et al. [1]

used a generalized eigenvalue system to find the solution

of a normalized cut problem. Cour et al. [2] constructed a

graph encoding pairwise pixel affinity, and they partitioned

the graph for image segmentation. The segmentation works

in different scales simultaneously, which ensures consisten-

cy between scales and provides high-quality segmentation-

s. In [6], Lafon and Lee showed that the diffusion distance

can be measured by the coordinates of weighted eigenvec-

tors of the graph Laplacian. Farbman et al. [7] replaced the

Euclidean distances with diffusion distances in several algo-

rithms, which are approximated using diffusion maps. The

diffusion maps are a set of dominant eigenvectors of a large-

scale affinity matrix, and they can be efficiently computed by

the Nyström method. The performance of different sampling

methods can be evaluated by measuring the performance of

diffusion map applications.

The system flow for finding approximated eigenvectors by

the Nyström method is shown in Fig.1. In this paper, a mean-
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Fig. 1: System flow for generating approximated eigenvectors

for a large-scale affinity matrix by Nyström method.

shift segmentation-based sampling technique is proposed, and

it performs better than other sampling methods in certain cas-

es. We also focus on the error analysis of the approximat-

ed eigenvectors, which constitute the final part of the system

flow.

The main contributions of this work are listed below.

1. Previous studies on the Nyström method focused on da-

ta sets of smaller data points (few thousands) and higher

dimension (tens to hundreds). To the best of our knowl-

edge, this study is the first to compare the performance

of different pre-processing methods for a large-scale

pixel-wise affinity matrix (large number of data points

of low-dimension data) of an image.

2. A fast improved Nyström approximation method is

proposed for a pixel-wise affinity matrix of an im-

age, which uses mean-shift [8] over-segmentation as

the pre-processing technique for selecting suitable sam-

pling points.

3. From the experimental result, for images with sim-

ple compositions and backgrounds, a suggestion of

K-means sampling is made for the selection of pre-

processing methods for the Nyström approximation.

For the others, mean-shift segmentation-based sam-

pling is a better solution due to its computation effi-

ciency.

The remainder of this paper is organized as follows. First,

an overview of the Nyström method is provided in Section 2.

In Section 3, we describe the details of the sampling method-

s for the Nyström approximation. In Section 4, we analyze

the performance of different sampling techniques. Finally, in

Section 5, we conclude the paper and discuss the scope for

future work.

2. NYSTRÖM METHOD

The Nyström method is a numerical approximation technique

for the integral equation

∫ b

a

W (x, y)φ(y) dy = λφ(x). (1)

The integral equation can be evaluated by a set of evenly s-

paced points ξ1, ξ2, ...ξn in the interval [a, b],

(b− a)

n

n∑
j=1

W (x, ξj)φ̂(ξj) = λφ̂(x), (2)

where φ̂(x) is the approximation of φ(x). Substituting x by

ξj , the system can be considered as the matrix eigenvalue

problem

AΦ̂ = nΦ̂Λ, (3)

where Aij = W (ξi, ξj), and Φ and Λ are the eigenvectors

and eigenvalues of A, respectively. The Nyström extension of

φ̂i is given by

φ̂i(x) =
1

nλi

n∑
j=1

W (x, ξj)φ̂i(ξj). (4)

Thus, the Nyström method can approximate the eigenvectors

of the system by extending the eigenvectors of a small set of

sample points.

3. SAMPLING METHODS OF NYSTRÖM METHOD

3.1. Completion in Affinity Matrix

For an image of N pixels, an N-by-N affinity matrix can be

defined as

Wij = exp(−‖Xi −Xj‖2
σs

− ‖Ii − Ij‖2
σc

), (5)

where Xi and Ii denote the location and color of pixel i, ‖.‖
is the Euclidean distance, and σs and σc are pre-defined pa-

rameters that control the impact of spatial difference and color

difference. After the affinity matrix is constructed, the diffu-

sion map can be calculated by finding the eigenvectors of the

affinity matrix W . Since the dimension of W is too high, it

is impossible to find the eigenvectors directly. Therefore, the

Nyström method is applied to solve this problem. Suppose

that n pixels are sampled, and that these sample points can

define an n-by-n affinity matrix A. The n-by-m affinity matrix

of n sampling points and the remaining m pixels is defined as

B, where m is N − n,. The original affinity matrix W can

be rewritten as W = [A B;BT C], where C is the affinity

matrix of N − n unsampled points. Usually, the selected n is

much smaller than N for computation efficiency. Using the

Nyström extension, the eigenvectors can be approximated as

Ū = [U ;BTUΛ−1] where U denotes the eigenvectors of A,

and Λ is the diagonal matrix of the eigenvalues of A. In other

words, the diagonalization of the n-by-n affinity matrix A is

given by A = UΛUT . Using the approximation eigenvectors

Ū , the total affinity matrix W can be approximated as

Ŵ = ŪΛŪT =

[
A B
BT BTA−1B

]
. (6)

Comparing W and (6), it is evident that the approximation

error results from the difference between C and BTA−1B.

In order to evaluate approximation performance, the approx-

imation error is defined as E = ‖W − Ŵ‖F , where ‖.‖F
denotes the Frobenius norm of a matrix. Throughout this pa-

per, the approximation error is used to check the performance
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Fig. 2: The image on the left is the input image. After mean-

shift over-segmentation, the original image is separated into

K regions, as shown on the right. In each region, the point

that is closest to the center of mass of that region will be sam-

pled. The centers of the blue crosses in the image on the right

are the sampling points for Nyström approximation.

of different pre-processing methods for the Nyström method

because a lower error results in more precise approximation.

3.2. K-means-based Sampling

In [4], Zhang et al. showed that k-means clustering is a good

sampling method because it can result in a smaller error up-

per bound. For an image of N pixels, each pixel is embedded

into a 5-D space (R,G,B,X,Y), and then, all the pixels can be

divided into K clusters with K centers. For Nyström approx-

imation, these K centers can be used to choose the sampling

points(sk). sk = argmini |Zi − μk|, where Zi is the 5-D

data of pixel i and μk is the center of cluster k. After all the

sampling points S (S = {s1, s2, ..., sn}) are fully defined,

the affinity matrix A can be calculated, and then, the Nyström

approximation can be applied.

3.3. Mean-shift segmentation-based Sampling

Mean-shift [8] is a popular technique in feature space analy-

sis, and it is widely employed in image over-segmentation. A

mean-shift segmentation-based sampling method is proposed,

and the performance of the proposed method will be com-

pared with that of other state-of-the-art sampling methods in

Section 4.

An input image I with N pixels can be over-segmented

into n regions. In the entire image, there are n points to be

sampled. Each region Rk has rk pixels, and only one land-

mark point among rk pixels will be sampled. The sample

point (sk) is defined as the spatially closest point to the center

of mass of region Rk, and it given by

sk = argmin
i

N∑
j=1

Yj , (7)

Yj =

{ ‖Xi −Xj‖2 if i, j ∈ Rk

0 otherwise
, (8)

where Xi denotes the location of pixel i. The affinity matrix

A can be calculated using the set of all sampling points, S.

Table 1: Performance comparison of the proposed mean-

shift segmentation-based sampling method and other sam-

pling techniques

Datasets Better than k-means

sampling

Better than random

sampling

MSRC 52% (26/50) 88% (44/50)

MSRA 55% (55/100) 87% (87/100)

Fig.2 (right) shows the concept of the proposed mean-shift

segmentation-based Nyström approximation. First, the input

image is over-segmented into n regions, and then, the center-

s of the blue crosses are selected as the sampling points of

each region. After the affinity matrix of sampling points A is

constructed, its eigenvectors (U ) and eigenvalues (Λ) can be

calculated, and then, the approximated eigenvectors Ū can be

derived.

4. SAMPLING TECHNIQUE ANALYSIS

In this section, the performance of different sampling meth-

ods is compared on the basis of the approximation error. Fur-

thermore, the effect of the approximation error on a real ap-

plication, i.e., image segmentation, is discussed.

4.1. Datasets

The two main objectives of this study are to

1. Compare the performance of different sampling tech-

niques for Nyström approximation by measuring the

reconstruction error of the entire affinity matrix W .

2. Discuss the effect of the approximation error in the

Nyström method on real applications. Here, we select

spectral segmentation as the test application.

In order to discuss the effect on spectral segmentation, the

test images must have a clear object. Therefore, two image

datasets are used as the test bed. One is the MSRC Grab-

cut database [9] with 50 images, and the other is the MSRA

salient object database [10]. There are 20000 images in the

MSRA database; however, owing to time and computation

constraints, only 100 images are randomly selected as test im-

ages.

4.2. Error Analysis

In this subsection, we compare the approximation errors oc-

curring in different types of sampling methods. Owing to the

limitation of physical memory in computing the reconstruc-

tion error of Ŵ , each test image is scaled down such that its

longer side has a length of 160 pixels. For mean-shift over-

segmentation, the parameters are set as follows: hs = 1,

hr = 1, and M = 30. For k-means sampling, we use the

default settings of the kmeans function in MATLAB. The
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(a) Images where k-means sampling has better performance. (b) Images where the proposed method has better performance.

Fig. 3: The MSRC Grabcut database is clustered into two sets. One is the set in which the proposed method has better perfor-

mance, and the other is the set in which k-means sampling method has better performance. It is evident that the images enclosed

in red rectangles in (a) have relatively simple backgrounds. It can be observed that for pictures with simple backgrounds without

texture, k-means sampling tends to perform better. In contrast, for images with complicated backgrounds, the proposed method

performs better.

average sampling rates for the MSRA and MSRC datasets are

1.10% and 1.14%, respectively.

The experiment is conducted as follows. First, each image

is segmented into n regions by mean-shift over-segmentation,

and then, the proposed method is applied to find the approx-

imated eigenvectors. Next, n is set to be the number of sam-

pling points of k-means and random sampling.The k-means

and random sampling methods are characterized by random-

ness, which means that the approximation result of every trial

is not unique. Therefore, for each image, k-means and ran-

dom sampling are repeated 30 times; thus, 30 sets of approx-

imated eigenvectors are obtained for every image. Because

the proposed method provides only one approximation re-

sult given fixed parameters, mean-shift segmentation-based

approximation is conducted only once for each image, in-

stead of 30 times. To compare the performance of the pro-

posed method with that of other sampling techniques, the re-

construction error E = ‖W − Ŵ‖F is calculated, and the

results are listed in Table 1. Here, we use the average error

of 30 trials of k-means and random sampling for comparison

with the error of the proposed mean-shift segmentation-based

sampling. As seen in Table 1, the performance of the pro-

posed method is slightly better than that of k-means sampling

(52% & 55%), and considerably better than that of random

sampling (88% & 87%). For further analysis of the charac-

teristics of k-means sampling and the proposed method, the

images in the MSRC database are clustered into 2 categories,

as shown in Fig.3. The category on the left contains images

in which k-means sampling performs better, whereas that on

the right contains images in which the proposed method per-

forms better. The images enclosed in red rectangles have rela-

tively simple backgrounds without texture, and k-means sam-

pling performs better. Therefore, we propose a hypothesis

that for images with simple compositions and backgrounds,

k-means sampling method performs better, whereas for im-

ages with more complicated compositions and backgrounds,

the proposed method can perform better.

4.3. Variance in K-means-based Sampling

The obversion in Fig.3 is not sufficiently strong to support our

viewpoint. In order to verify our viewpoint, further numeri-

cal analysis is required. Fig.4 shows the number of trials in

which k-means sampling performs worse than the proposed

method. The higher the bar, the better is the performance of

the proposed method. The images with simple background-

s in Fig.3 are represented by vertical red lines. For 6 of the

8 images, the performance is not worse than that of the pro-

posed method in 30 trials. K-means sampling performs worse

in only 6.25% of the 240 trials for these 8 images; this proves

that ”for images with simple compositions and backgrounds,

k-means sampling method performs better.”

Furthermore, an interesting observation can be made from

Fig.4. When comparing the average error, in 52% of the

cases, the proposed method performs better; however, when
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Fig. 4: Histogram of number of trials in which k-means sam-

pling is worse than the proposed method for each image of the

MSRC database. The red vertical lines represent the images

enclosed by red rectangles in Fig.3.

comparing the trials individually, the proposed method per-

forms better in only 12.06 trials, on average. This indicates

one major problem in the k-means sampling method, i.e., the

variance results from randomness. Since the performance of

the k-means sampling method is significantly affected by the

initial seeds, the randomness may result in a considerable er-

ror that destabilizes the approximation result in each trial. In

order to check whether the proposed method can provide a

more stable solution than k-means sampling, that is, whether

the proposed method can handle the images in which k-means

sampling has a large variance among different trials, an analy-

sis is conducted, as shown in Fig.5. The X-axis represents the

standard deviation of the normalized k-means sampling error

(Ē) for 30 trials of one image, where the normalized k-means

sampling error Ē is defined as Ē = ‖W−Ŵ‖F
N , where N is

the number of pixels in the image. The Y-axis represents the

ratio of the mean-shift segmentation-based sampling error to

the average of the k-means sampling error for 30 trials. Both

these variables are expressed in the log scale in Fig.5. Fig.5

only shows the part where STD(Ē) > −1.5 because we fo-

cus on the images in which k-means sampling has a large vari-

ance. The red line is the regression line for which the corre-

lation coefficient equals -0.7099, which means that these two

variables are highly correlated. This proves that when dealing

with images in which k-means sampling has a large variance

among different trials, the proposed mean-shift segmentation-

based sampling method can provide a better solution. The

points below the green reference line in Fig.5 represent the

images in which the proposed method performs better. Fig.5

shows that the proposed method has a smaller approximation

error in 64% (16/25) of the images, which is higher than the

value listed in Table 1 (55%). This proves that for images

with more complicated compositions and backgrounds, the

proposed method can perform better.
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Fig. 5: The red line is the regression line of the standard

deviation of the k-means-based sampling error (X-axis) and

the ratio of the mean-shift segmentation-based sampling er-

ror to the k-means-based sampling error (Y-axis); both vari-

ables are expressed in the log scale. The points below the

green reference line represent the images for which mean-

shift segmentation-based sampling performs better than k-

means-based sampling. The data is generated from the M-

SRA database.

4.4. Computation Time

It is important to consider not only the accuracy but also

the computation time when we evaluate the performance of

a sampling method. Table 2 lists the average computation

time of each sampling method. The second column lists the

computation time of the pre-processing step (sampling), the

third column lists the computation time for approximation,

and the last column lists the total computation time. The

MATLAB program is executed on a PC with Core(TM)-i7

2600 (3.40GHz) and 16 GB memory. The proposed method

is much faster than K-means sampling. Surprisingly, the

proposed method is faster than random sampling mainly be-

cause in the approximation procedure, we use a sparse ma-

trix to accelerate the computation. Elements whose values

are below the threshold are set to 0. The sampling points

in mean-shift segmentation-based and k-means sampling d-

iffer considerably, resulting in a more sparse affinity matrix.

This explains why the approximation processes of mean-shift

segmentation-based and k-means sampling are slightly faster

than random sampling.

4.5. Effect in Image Segmentation

In this subsection, we discuss the effect of the approxima-

tion error on a segmentation application. A diffusion map is

used to implement image segmentation. The red and green

lines in Fig. 6 represent the input strokes for identifying the

foreground and background. The diffusion distances between

each pixel in the image and the labeled pixels are calculated.

Every pixel is clustered into the foreground or background,

set by the k-nearest neighbor (KNN) algorithm. If a pixel
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Table 2: Average computation time of each sampling method

in the two datasets (s)

MSRC Pre. Main Total

Mean-shift 0.1378 1.2862 1.4240

K-means 8.5535 1.3036 9.8571

Random 0.0015 1.5077 1.5092

MSRA Pre. Main Total

Mean-shift 0.1368 1.2148 1.3516

K-means 8.1309 1.2262 9.3571

Random 0.0015 1.4308 1.4324

has more KNNs that are identified as foreground pixels, it is

clustered into the foreground; otherwise it is regarded as a

background pixel. Fig. 6 shows an example of the effect due

to the approximation error of different sampling methods.

5. CONCLUSION

In this paper, we compared different sampling methods for

Nyström approximation. To the best of our knowledge, this

is the first study to focus on a pixel-wise affinity matrix for a

single image in order to analyze the performance of sampling

methods for Nyström approximation. The proposed mean-

shift segmentation-based Nyström approximation can handle

those images in which k-means sampling does not perform

well. Moreover, the proposed method is faster than random

sampling, with a lower approximation error.

This work can be potentially extended for further analysis

of the relationship between the Nyström approximation error

and the error rate of image segmentation. In addition, it can be

extended to apply the Nyström approximation with different

sampling methods to other applications such as color editing

with diffusion maps or spectral clustering.
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