
CONCURRENT IMAGE QUERY USING LOCAL RANDOM WALK W ITH RESTART ON
LARGE SCALE GRAPHS

Yinglong Xia1, lui-Hsin Lail, Lifeng Nai2, and Ching-Yung Lin1

lIBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
2Georgia Institute of Technology, Atlanta, GA 30332, USA
{yxia,larry lai,chingyung} @us.ibm.com, Inai3 @ gatech.edu

ABSTRACT

Efficient image query is a fundamental challenge in many
large scale multimedia applications, especially when han­
dling many queries concurrently. In this paper, we proposed
a novel approach called graph local random walk for high
performance concurrent image query. Specifically, we or­
ganize the massive images set into a large scale graph us­
ing graph database, according to the similarity between im­
ages. A heuristic method is utilized to map each query im­
age to some vertex in the graph, followed by a local search
to refine the query results using an alternative of local ran­
dom walk on graph. The local random walk process is es­
sentially a weighted partial traversal in the local subgraphs
for finding a better match of the query images. We organize
the graph of the image set in a parallelization amenable ap­
proach, so that a set of partial graph traversal for local random
walk can be performed concurrently, taking the advantage of
the multithreading capability of processors. We implemented
the proposed method in state-of-the-art multicore platforms.
The experimental result shows that the graph local random
walk based approach outperforms baseline methods in terms
of both throughput and scalability.

Index Terms- Graph, image query, parallel, multicore

1. INTRODUCTION

Multimedia increasingly creates Big Data. Similar to many
big data applications, big multimedia problems can involve
a massive collection of interconnected entities, which is nat­
urally represented as graphs. Therefore, it is reasonable to
leverage the advances in high performance graph computing
and graph databases for solving big multimedia problems ef­
ficiently. We take the concurrent image query problem as an
example to illustrate the role of graph computing in multi­
media. The proposed techniques in this paper can be easily
extended to various other big multimedia applications.

Problem definition: Given a set of query images,
for each query image, we concurrently find the image with
the highest similarity from a collection of images, a.k.a the
image reservoir, in near real-time, where the image reservoir

can be dynamically updated. By concurrent, we mean that
all the queries should be handled in parallel to enhance the
throughput. Figure 1 illustrates this process.

Challenges: (1) High data volume makes it impossi­
ble to perform concurrent image query in the native way, i.e.,
performing an exhaust search by comparing each query im­
age against every image in the reservoir. Some hierarchical
method or divide-and-conquer solution should be considered.
(2) Concurrency requires us to explore parallel computing el­
ements of platforms in the solutions, making it scale up and/or
out. (3) Irregularity in the entity interconnection makes it
challenging to index the images while preserve the similarity
in index locally.

Contributions in this paper include: (1) High data

volume is addressed by a heuristic that maps a query image
to a subgraph, followed by a local random walk on the sub­
graph to refine the searching result; (2) Concurrency is han­
dled by a highly efficient scheduler design that performs local
search on graph in parallel; (3) Irregularity is resolved by the
graph database based solution that organizes the images from
a reservoir into a large scale graph based on their similarities.
We implemented the proposed technique on parallel comput­
ing platforms and achieve superior performance compared to
baseline methods.

The paper is organized as follows: We discuss the back­
ground in Section 2 and then present the image reservoir us­
ing a graph database in Section 3. The local random walk
with restart on graph is analyzed in Section 4, followed by
the cache-aware scheduling in Section 5. Experimental study
is discussed in Section 6. Section 7 concludes this paper.

2. BACKGROUND AND RELATED WORK

Let's denote a collection of images by V = {VI, V2, . .. , Vn},
where Vi represents an image. Define a metric SVi,Vj as any
similarity measurement between two images. SVi,Vj can be
implemented in several ways, up on the specific application.
See Section 3 for details. Given a threshold E, an image reser­

voir based on image set V can be defined as a graph Q(V, E) ,
where E = { (vi, vj)lsvi,vj > E, Vi, Vj E V}. Given a set of

Image similli�ity graph

Fig. 1. System View of linage query

query images V = {vx}, the concurrent image query problem
is to find a vertex:

Vy = arg max Sv v·, VVx E V vjEV x,
J

(1)

Note that Vx may or may not belong to V. In case we have
Vx tf. V , then the query is approximate. Given a starting ver­
tex v� E V reasonably similar to vx, then Vy can be possibly
identified using a local search on the graph [1].

Random walk has been studied for local search [2][3].
Basically, given a vertex Vi E V as the starting point, a par­
ticle can move from Vi along the edges in Q(V, E). If the
particle is at vertex Vi E V at some time, then it will be at a
neighbor of Vi, say Vj , at the next time; the neighbor is chosen
randomly, in proportion to the transition probability PV.i,Vj as­
sociated to (Vi, Vj) E E. The expectation time for the particle
to move from Vi to Vk#i E V is called the hitting time tVi -tVk'
Hitting time has been well studied for finite graphs.

Random walk on infinite graphs imposes
fundamental challenges [4]. Due to the massiveness of the
graph considered in our scenario, it is not efficient to perform
the random walk over the entire graph Q(V, E). Instead, it
is performed within a local subgraph QVi (V' , E') starting
from Vi. The local subgraph is unbounded, since we can not
predetermine the scale of QVi (V' , E'). If we have I V'I « I V I
which is typically true, this is approximately equivalent to
the random walk on infinite graphs. It is worth noting that the
hitting time tVi-tVk#i between vertices is generally infinite.
For example on an infinite line, the expected time to get from
o to 1 is infinite.

Random walk with restart (RWR) addresses the
challenge for random walk on infinite graphs. If we allow the
random walk to restart at Vi, then we might expect the hitting
time with restarts to be finite, since in this way it eliminates
the possibility a walk will wander to far off towards infin­
ity [5]. The RWR algorithm has been discussed in several
literature [1][4], although we have not found any multime­
dia application of RWR with emphasis on system throughput.
We propose concurrent RWR based solution as a promising
technique for large scale image query in graph database.

Concurrent search is more than conducting mul­
tiple local searches independently. For example, assume
two local searches are performed on Q(V, E) starting at Vx

and vy, respectively, where each visits a set of vertices that
span a subgraph, denoted by Qx(Vx, E x) and Qy(Vy, E y). If
VxnVy 0/=. 0, then scheduling the two searches onto processors
(cores) with shared cache leads to improved performance, due
to the data locality. Similarly, when a processor was allocated
a set of local search tasks on Q, it is more efficient to perform
those with overlapped search areas successively [6]. There
is some existing work discussing parallel/distributed random
walk [4][7]; however, to the best of our knowledge, none of
them can be directly utilized for image query based on ran­
dom walk with restart on infinite graphs. Therefore, we de­
velop a cache-aware scheduler for concurrent image query.
We particularly focus on scaling up image query on multi­
core/manycore processors, although our techniques can be ex­
tended to distributed computing environment as well.

3. MASSIVE IMAGES AS A GRAPH

Recent advances in graph database provide novel approaches
for organizing multimedia dataset. For image search applica­
tions, the geometry of photo capture among pictures can be
modeled in the graph connection to increase searching speed
and accuracy [8]; Visual features (e.g., BoW) or text to find
the approximate nearest images through the effective feature
index (e.g., LSH) can also be modeled in a graph structure for
increasing accuracy [9].

In our scenario, a large scale graph is constructed to rep­
resent a massive set of human face images, where each vertex
represents an image while each edge indicates the intercon­
nection between two images. The interconnection can be de­
fined in various ways. In our case, an edge means that the
similarity of the two images is above a pre-defined thresh­
old E. The detailed discussion for similarity measure among
face images is beyond the scope of this paper. For the sake
of completeness, we briefly present the method that we used.
Our method combines the grid based scale invariant feature
transform (Grid-SIFT) [10] and geometric feature matching.

Keypoint extraction is performed with respect to
a human face image in 4 steps: 1) We detect face region and
normalize it to a fixed size; 2) We divide the face region into
four subregions, i.e., forehead, eye, nose, and mouth (see Fig­
ure 2(a». 3) We use the Harris corner detection to identify
keypoints and then 4) apply SIFT descriptor for keypoint de­
scriptions. Each keypoint is represented by a vector of 128
elements.

Keypoint matching gives the similarity between
two images, which is defined as the sum of the similarity
of all the corresponding subregions between the two images.
Within a subregion I, we have a set of keypoints extracted
from the raw images Vx and vy. We define matrix Ar = {aij}
where aij is the negative exponential function of the sum of
square difference (SSD) between the i-th keypoint and the j­
th keypoint from the corresponding subregions in Vx and vy,
representing the similarity between the two keypoints. The

Forehead

Eye

Nose

Mouth

(a)Normalize & Keypoint Extraction (b)Face Graph & Query

Fig. 2. (a) Normalize a face region and partition it into four
subregions (grids); (b) Image reservoir built by image simi­
larities. The vertex color shows partitions.

keypoint matching is to find a permutation matrix Xr for ex­
changing the columns (or rows) in Ar, so that the i-th key­
point in Vx corresponds to the i-th keypoint in vy, and Li aii
is maximized. Therefore, we calculate the permutation matrix
Xr by a linear prograrmning:

max tr(ArXr)
x

� � T � �

s.t. Xr1 = I, Xr 1 = I, Xr ?: 0 (2)

where l' is a vector of all Is and the constraints ensures X is a
permutation matrix [11]. The geometricJeature matching can
also be applied to Xr for preserving matching pairs geometry
relationship, to avoid matching the left eye in Vx to the right
eye in vy. Denoting R the number of subregions in an image,
the similarity of the two images can be obtained by:

R R

S = '" sr = '" A X Vx,Vy � Vx,Vy � r r· r=l r=l
(3)

Image Reservoir Q (V, E) is built according to the
image similarities. As shown in Figure 2(b), each vertex rep­
resents a human face image and each edge links two simi­
lar images. The image reservoir can be partitioned, possibly
corresponding to the clustering of images. We illustrate the
partitions of the graph using different colors in Figure 2(b).
Various metrics can be utilized for the partitioning. In our
scenario, it is the difference of the first and second largest
dominant directions of the SIFT keypoints of a face image.

Image query was defined in Section 2. We extract the
keypoints from a query image in the same approach as we pro­
cess the images in the reservoir. Then, it is straightforward to
categorize the query image into a partition in Q (V, E) using
the dominant directions of the SIFT keypoints. A local search
(see Section 4) can be conducted starting from some repre­
sentative vertices in this partition, such as the central vertex
of a partition, to refine the result.

4. GRAPH LOCAL RANDOM WALK WITH
RESTART

The local search is implemented by a random walk with
restart (RWR) on a graph, where the graph topology comes

Spannini tr@@of
th� \ll s lt� vmt�s

byRWR /.-___ +.L.L,..L..r�.......!--

Fig. 3. Local Random Walk on Graph

1=3

from the image reservoir Q (V, E). Given a query image
vx, a starting vertex Vi, the RWR will traverse a subgraph
QVi (V', E'). Denote a vector qt = (ql,q2,'" ,qW'I),where
t is a time stamp and qi is the probability that a particle re­
mains in vertex V i E V'. Initially, since all walkers start
from Vi, we have qO = (0, ... ,0, 1,0, ...), i.e., only qi = 1.
These parti�les I�ay remain in Vi at proba�i�ity Pi,i = t SVi,Vi'
or walk to Its neIghbor, say V j, at probabIhty Pi,j = Z SVi, Vj ,
where Z = SVi,V.i + LV(i,k)EE' SV.i,Vk is a normalizer. Let

p = {Pi,j} denote the transition matrix, we have qt+l =

pT qt, t = 0, I, . . '. After the first iteration, the particles
originally at Vi possibly walk away, so we may have multi­
ple elements in ql be nonzero. As time goes by, qt tells us
the probability that the particles stay in each vertex. Those
with high probabilities should be returned as the local search
result. In simplicity, we return the vertex corresponding to
the maximum element in qt as the search result. In RWR,
we dynamically compute the transition probabilities P on the
edges according to the similarity of the query image and the
images in the reservoir, so that the RWR can find the most
likely matched image to Vx'

Due to the agnostic to the subgraph QVi (V', E') in local
search, we cannot obtain qt It-+oo by the eigen decomposition
of P (i.e., solving q = pT q), as what we did for many ran­
dom walks on finite graphs. Instead, we simulate the walk
of the particles. Note that the particle walk on QVi is essen­
tially a partial traversal of the subgraph. By partial traversal,
we mean that some vertices may not be visited due to the low
transition probabilities. Thus, starting from Vi, we can con­
struct a tree shown in Figure 3 to illustrate the partial traversal
level by level. Each vertex is associated with a similarity to
the starting vertex SVk ,Vx shown as a bar in the figure.

We extend the concept of restart in RWR to allow a ran­
dom walk restart from any visited vertex, instead of the orig­
inal starting vertex. When the random walk reaches a new
(unvisited) vertex, we expand the tree by adding the vertex
as a leave; otherwise, we restart from the visited vertex. For
example, if a particle walks from vertex 4 to vertex 3 in the
subgraph, it is equivalent that we restart a new random walk
starting from vertex 3.

There is a trade-off between the accuracy and efficiency

in the RWR based local search. Specifically, the larger the
local search scope (i.e. the size of subgraph Qv ' (V' , E')) is,
it is more likely to find the best matching; but it consumes
higher execution time. Given a vertex Vz in the image reser­
voir Q(V, E), we estimate the execution time using the hitting

time from a starting vertex Vi to any vertex Vz, i.e., tVi--+Vz'
For the simplicity, we assume QVi (V' , E') is an infinite graph,
where each vertex has equal degree d. Such a tree is known
as d-regular Cayley tree, denoted by Td. Note that Td is sym­
metric, so we have tVi--+Vz = tvz--+Vi' Assume Vz is at level
k in Td. Let Tg denote the truncated tree that contains the
first k levels of Td with d - 1 loops for each vertex at level k.
We can see that the hitting time with restarts from level k to
the starting vertex is the hitting time on Tg [5]. Going from
level j + 1 to an adjacent vertex u at level j requires itself a
whirling tour on subgraph Tg_j rooted at u [5]. Note Tg_j
has L7�g-1(d - l)i edges and (d - l)k-j loops, and each
edge is used twice and each loop once. Let Wj be the length
of a whirling tour on Tg from level j + 1 to an adjacent vertex
u on level j. According to [5], we have:

(k-j-l)
Wj = 2· � (d - l)i - 1 + (d - l)k-j (4)

Recall that we allow a random walk restart at any visited ver­
tex, which can be viewed as restarting at the root and then
walking to the vertex. Therefore, we estimate the upper bound
of hitting time tVi --+vz by summing Wj over all levels:

k-l
tVi--+Vz :s; L Wi

i=O
(d - l)k + 1 - (d - l) (d + (d - l)k - 1)

(d - 2) 2 (5)

Now, given the acceptable searching time, we can estimate
how faraway our RWR should explore in Q(V, E).

S. CACHE-AWARE SCHEDULING OF
CONCURRENT QUERIES

Computational characteristics of the proposed solution for
concurrent image must be studied for providing an efficient
implementation. The two major primitives involved in the
proposed solution are the graph random walk with restart

(RWR) and the image similarity estimate (see Sections 3
and 4, respectively). Although the two are closely related,
they show significantly different computational characteris­
tics. Therefore, we separate the two workload as illustrated
by Figure 4, both are processed concurrently. Note that within
the same query, the similarity must be estimated before per­
forming RWR.

• RWR is a typical graph computing, where the data ac­
cess patterns are highly irregular, which normally re­
sults in poor cache performance. We parallelize the

Fig. 4. Graph random walk and similarity estimate are pro­
cessed in separate parallel units, both in concurrent manner.

graph computing utilizing a graph database called IBM
System G, which implements native support for various
graph operations [12]. Besides, we explore lock-free
data structures and a cache-aware scheduler to address
the challenge.

• Similarity estimate is a traditional scientific comput­

ing, involving matrix/vector calculations (see Eq. 2),
which typically shows regular memory access patterns
and satisfactory cache performance. Since the matri­
ces and vectors are straightforward to be evenly parti­
tioned, parallelization of such workload is trivial and
well studied [13]. We dedicate a set of cores in a server
to parallelize the similarity estimate. Some advanced
processors, such as GPGPUs and/or Intel Phi, can be
exploited to further speed up the execution.

Lock-free concurrent RWR data structure is uti­
lized for processing RWRs in parallel. Since the traversed
subgraphs of the two RWRs, say QVi (Vi, Ei) and Qv; (Vj, Ej),
may overlap, updating the probability qt (see Section 4) for
overlapped vertices v E Vi n Vj concurrently can cause am­
biguous results a.k.a. data race. Although this can be elimi­
nated using mutex locks, it leads to increasing synchroniza­
tion overhead as the number of cores increases. Our pro­
posed lock-free data structure spawns up to P separate slots,
i.e. ql t, . . . , qp t, for the overlapped vertices, where P is the
number of threads. % t is padded to avoid (]j t, j -I- i being in
the same cache line that can cause false sharing. Since there
are only P concurrent threads running in the system, we have
at most P concurrent RWRs, each now having its own qt to
work on. Therefore, data race is completely avoided without
using any lock.

Cache-aware scheduling allocates a set of image
queries to a set of processors (cores) with shared and/or sep­
arated caches. Cache-aware scheduling aims at maximizing
the re-use of the data that have been loaded into the cache. As
pointed out earlier this section, two RWRs QVi (Vi, Ei) and
Qv; (Vj, Ej) may overlap, i.e. Vi n Vj -I- 0. Scheduling the
two RWRs onto the same processor successively, or onto two

00,/
.... /

\.
1 \ .,.

.�

..
• ;.)''e �

•......... �----

Starting Vertices of Incoming Queries

--
Thread 0 Thread 1 Thread 2 Processed

r
0 6 12

---' Query

2 7 15
1 9 13
3

Query Scheduling Result

Fig. 5. Query scheduling example

processors with shared cache in parallel, help re-use the data
in cache. The former is called intra-thread locality and the
latter called inter-thread locality [6]. For estimating the lo­
cality of queries, we let a RWR mark the vertices it walks.
The mark on a vertex v consists of a time stamp plus the CPU
socket ID, i.e. (tv, sv), where we assume all the cores within
a socket have the shared cache (e.g., L2 or L3 data cache).
(1) To improve the inter-thread locality, when a new query
comes, we first determine its starting vertex (Section 3), say
u, and then check if u is marked. If not, the query is assigned
to any processor that is not overloaded; otherwise, it is as­
signed to any processor in socket su, since the neighborhood
of u was last loaded into the cache of suo (2) To improve
the intra-thread locality, each processor handles the assigned
queries in reverse order of the time stamp of their starting ver­
tices, since the most recent data is more likely cached. In ad­
dition, to avoid any processor being overloaded, we perform
work stealing periodically to balance the workload [14].

6. EXPERIMENTS

We implemented the proposed solution using C++ with
PThreads on top of the IBM System G Native Store, a high
performance graph database [12]. The code was compiled us­
ing g++ 4.4.6 with -03 optimization in CentOS 6.3 on an IBM
BladeCenter multi-socket multicore server. The server has 4
Intel Xeon E7 -4830 processors running at 2.13 GHz and the
memory size is 256 GB. Each processor contains 8 cores with
hyperthreading enabled. So, 64 concurrent hardware threads
are supported.

Experiment Oatasets in our evaluations consists
of: (1) a synthetic dataset that was converted into a graph
with 5000 vertices and 100,000 edges. This dataset is used for
verifying the graph local random walk with restart (RWR) in
terms of correctness and effectiveness, so we precomputed the
image similarities; (2) a real-world image reservoir provided
by the ISVision Co. for the ICME'2014 Industry Grand Chal­
lenge [15], including 5978 photos and 24 videos from 336
persons. The corresponding graph has 5978 vertices, 89,206
edges, and 45 partitions. An additional set of 1024 testing

�SV-4

�SV-5
�SV-6

------ SV-7

--+-SV-8

10 20 30 40 50 60 70 80 90

of visited vertices in RWR

Fig. 6. Accuracy evaluation of image query based on graph
local random walk

images was taken from those persons for generating queries.
This dataset was utilized to verify the efficiency and scalabil­
ity of the concurrent graph queries.

Accuracy evaluation results are shown in Fig­
ure 6, where we evaluated the proposed RWR technique on
the synthetic dataset with various parameters, such as the
starting vertex (SV) for a query. To estimate the impact of
the SV, for each query image, we intentionally chose multi­
ple SV positions with different distance to the target vertex,
i.e., the best matched image. Figure 6 shows the experimental
results where the SVs were 4 to 8 hops away from the target
vertex, denoted by sV-4 to sV-8. To measure the accuracy
of the RWR, we introduced the metric called rank number,
which was calculated as follows: We first sorted all the ver­
tices from the graph into a list by their similarities to the query
image in descending order. Then, we performed the query and
identified the rank of the returned image in the above list.

Figure 6 also illustrates the relationship between the num­
ber of visited vertices and accuracy. It shows that the more
vertices get visited during the RWR, the better accuracy was
achieved. Moreover, if the SV is closer to the target vertex,
less vertex visits occurred. Such observations are consistent
with our intuition. For example, 36 vertices were visited to
reach the target vertex for SV-4, but 51 vertices were vis­
ited to reach SV-8. The experimental results show that RWR
achieved the best matched result with only a few dozens of
vertex visiting. That is, no more than a few dozens of similar­
ity estimates were performed, compared to about 5000 times
similarity estimates in the native baseline method, where a
brute-force exhaust search was performed for finding the best
matched image. Thus, our proposed RWR technique signif­
icantly reduced the similarity estimate workload by 2 orders
of magnitude.

Performance evaluation result is shown in Fig­
ure 7. In this experiment, we established the image graph
using the real-world dataset and generated 1024 queries us­
ing the test images. Two experiments were performed: (1)
For the baseline method, we processed the queries using a
naive single thread brute-force by comparing the query image
against every image in the dataset. (2) We utilized our pro­
posed method to execute the queries using various numbers

1800

g. 1350

al 900
�

(J)

:;
a.

.s::; 66 '" :::>
e 33

.s::;
I- 0

0 32 40 48 56 64
Thread #

Fig. 7. Performance of the proposed concurrent image query
on real-world image reservoir

of threads. The speedup over the baseline method is shown in
the upper part of Figure 7 and the scalability is shown in the
lower part. According to the results, our proposed technique
achieved over 3 orders of magnitude in terms of speedup com­
pared to the baseline. Even for using only 2 threads, we
observed that the average time for processing a query was
around 0.558 seconds; while the baseline method took 23.268
seconds. So, the speedup was 83.3x. This is because our
method did not visit all the images for finding the best match.
The lower part of Figure 7 shows the observed throughput
compared with the ideal case (i.e., the linear speedup). The
throughput is defined as number of queries processed per sec­
ond. We can see that our proposed technique showed near lin­
ear scalability in many cases. Note that our platform has 32
CPU cores in total. Thus, when 64 concurrent threads were
used, the shared hardware between hyper threads degrades
the performance. In summary, the experiment results demon­
strated both impressive performance speedup and scalability
for our technique.

7. CONCLUSIONS

We presented a high performance framework for concurrent
image query using graph database, where a massive set of
images are organized into a graph. The graph links images
together based on their similarities. The query images were
assigned to some vertices in the graph, based on the keypoints
extracted from the images. Those vertices were relatively as­
semble to the query images. A random walk with restart was
utilized for performing a local search on the graph for refin­
ing the query results. Our solution for the concurrent image
query is parallelization amenable. We designed an efficient
scheduler for allocating the queries by maximizing the data
locality in processor caches. The proposed method illustrates
superior performance compared to the baseline method.

In future, we plan to study the SIMD for parallelization
the similarity computation. Since this application involves
both (partial) graph traversals and similarity computation, two
tasks of different computational characteristics, we would like
to port the system on heterogeneous computing platforms.

8. REFERENCES

[1] F. Yasuhiro, N. Makoto, O. Makoto, and K. Masaru,
"Fast and exact top-k search for random walk with
restart," Proc. VLDB Endow., pp. 442-453, 2012.

[2] W H. Hsu, L. S. Kennedy, and S.-F. Chang, "Video
search reranking through random walk over document­
level context graph," in Proc. MM 2007, pp. 971-980.

[3] S. D. Servetto and G. Barrenechea, "Constrained ran­
dom walks on random graphs: Routing algorithms for
large scale wireless sensor networks," in Proc. of WSNA

2002, pp. 12-21.

[4] M.-F. Chiang, T.-W Wang, and W-C Peng, "Paral­
lelizing random walk with restart for large-scale query
recommendation," in Proc. PODS 2010, pp. 8:1-8:6.

[5] N. McNew, "Random walks with restarts 3 examples,"
2013.

[6] L. Nai, Y. Xia, C-Y. Lin, B. Hong, and H. Lee, "Cache­
conscious graph collaborative filtering on multisocket
multicore systems," in Proc. Computing Frontiers 2014.

[7] D. S. Atish, N. Danupon, and P. Gopal, "Fast distributed
random walks," in Proc. PODC 2009, pp. 161-170.

[8] J. Philbin, 1. Sivic, and A. Zisserman, "Geometric latent
dirichlet allocation on a matching graph for large scale
image datasets," Int'll. Computer Vision 2010, pp. 138-
153.

[9] S. Zhang, Q. Huang, G. Hua, S. Jiang, W Gao, and
Q. Tian, "Building contextual visual vocabulary for
large-scale image applications," in Proc. MM 2010, pp.
501-510.

[10] J. Kriiaj, V. Struc, and N. Pavesic, "Adaptation of
sift features for face recognition under varying illumi­
nation," in Proc. MIPRO 2010, pp. 691-694.

[11] D. P. Bertsekas, "The auction algorithm: A distributed
relaxation method for the assignment problem," Ann.

Oper. Res. , vol. 14, no. 1-4, pp. 105-123, 1988.

[12] "IBM System G," http://systemg.ibm.com/.

[13] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet,
D. W Walker, and R. C Whaley, "Design and imple­
mentation of the scalapack lu, qr, and cholesky factor­
ization routines," Sci. Program. , pp. 173-184, 1996.

[14] Robert D. Blumofe and Charles E. Leiserson, "Schedul­
ing multithreaded computations by work stealing," 1.

ACM, vol. 46, no. 5, pp. 720-748, 1999.

[15] "ISVision Dataset," http://www.icme20 14.org/isvision­
challenge/.

