
ARCHITECTURE DESIGN AND ANALYSIS OF IMAGE-BASED RENDERING ENGINE

Jui-Hsin Lai, Chieh-Li Chen, and Shao-Yi Chien

Media IC and System Lab
Graduate Institute of Electronics Engineering and Department of Electrical Engineering

National Taiwan University

ABSTRACT

Image-based rendering (IBR) is a technique to render the
video from images, and it provides users to have more in-
teraction and immersive experience in watching a video. In
this paper, we integrate the computation of several IBR appli-
cations, analyze the bandwidth of memory access, and design
an architecture to process the computation of IBR. Experi-
mental results show that the proposed IBR Engine is able to
render a video with resolution 720×480 and 30 frames per
second, which is 12.7 times faster than a Core2Due 2.83 GHz
CPU. For the extensions, IBR Engine can be embedded in the
television system and lets viewers enjoy the functions from
IBR.

Index Terms— IBR, DIBR, panorama, video rendering

1. INTRODUCTION

Over the last two decades, image-based rendering (IBR) has
emerged as one of the most exciting applications of computer
vision [1]. For the applications extended from IBR, the layer
separation technique was employed to analyze videos con-
tents, and the customized videos were rendered by reintegrat-
ing the contents [2], which provided users a novel experience
in watching sports videos; 3D reconstruction techniques us-
ing multiple views of a scene could create interactive photo-
realistic experiences [3]; the rendering technique of human-
behavior combining background modeling was able to gen-
erate the vivid game videos and let users play a tennis game
after watching a match video [4].

As the progress in the development of IBR, more func-
tions will be proposed to enrich the viewing experience in the
next few years, and more people would be engaged and have
a deeper demand for IBR functions. In addition, we think
that more broadcasting videos would be presented with IBR
functions in the coming years, and the TVs will not only dis-
play broadcasting videos but also have the rendering ability to
provide IBR functions. Thus, how to design a processor, with
low hardware cost, low power consumption and embedded in
the TV system, would be a challenge. In this paper, we intro-
duce several IBR applications and analyze their computation,

data access and hardware cost. Then the IBR Engine is pro-
posed to process the computation of IBR applications, which
can render a video with resolution 720×480 and 30 frames
per second (fps). The experimental results show that the av-
erage hardware utilization among the supporting applications
is increased to 81.2% by using folding architecture, and the
bandwidth of memory access is reduced 88.8% by employ-
ing the cache mechanism. Comparing to other processors,
IBR Engine has the rendering speed 12.7 times faster than a
Core2Due 2.83 GHz CPU and 2 times faster than a Quadro2
Pro GPU. The contributions of this work are listed below.

• The primary computation of IBR applications is to cal-
culate the image projection, however different applica-
tion has different projective transform. We analyze sev-
eral transforms and propose a reconfigurable architec-
ture to process these computations.

• The heavy bandwidth requirement of memory access
is one of the challenges in designing IBR Engine. We
use cache mechanism for data reuse and a compression
scheme to decrease the data size, and memory band-
width is reduced 88.8% and 97.7%, respectively.

• To the best of our knowledge, the proposed IBR Engine
is the first processor specialized for the computation of
IBR, which has higher computational ability and lower
hardware cost than the CPU and GPU in the experi-
ments.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the supporting IBR applications, and their
computation and bandwidth of memory access are analyzed
in Section 3. Architecture design of IBR Engine is described
in Section 4. Section 5 presents experimental results along
with discussions. Finally, the major findings of the paper are
summarized in Section 6.

2. SUPPORTING IBR APPLICATIONS

2.1. Panorama

Panorama (PA) is an image stitched by photographs captured
from each viewing angle, which gives users an immersive ex-

978-1-61284-350-6/11/$26.00 ©2011 IEEE

CM0

CMi

CMj

CMn

P

CO0

COi

COj

COn

Rendering View

PVi

PVj

Concentric Mosaics

Concentric Circles

i

j

Fig. 1. Illustration of concentric mosaics.

perience by viewing the scene in their demand. The render-
ing technique is to build a cylindrical model using camera’s
focal length as the radius, and all the captured photographs
are projected on it. Therefore, the primary computation of
panorama is the projection transform from cylindrical coordi-
nate to frame coordinate. The equations of cylindrical projec-
tion are shown in the fallows.

x′ = f arctan
x

f
, (1)

y′ = f
y√

x2 + f2
, (2)

where (x
′
, y

′
) is the frame coordinate, (x, y) is the cylindrical

coordinate of panorama, and f is camera’s focal length.

2.2. Concentric Mosaics

Concentric mosaics (CM) is a set of mosaics constructed
on concentric circles [5], and each mosaic can be seen as a
panorama taken by the camera rotating on the concentric cir-
cles as shown in Fig. 1. As for the viewing effects, CM not
only provides users an arbitrary viewing angle like the view-
ing effects of panorama but also gives users abilities to watch
a rendering view at a arbitrary standing position inside the
concentric circles. The primary computations of CM are the
calculation of viewing angle θ and the corresponding slit im-
age PVi from the mosaics.

2.3. Depth-Image-Based Rendering

Depth-image-based rendering (DIBR) is a key technology in
advanced 3D TV system [6]. The principle of 3D viewing
effects is to render both video frames from the viewing angles
of right-eye and left-eye. Thus, the primary computation of
DIBR is to calculate the disparity from the depth map. The
equations of DIBR are shown below.

xL = xc + (
tx
x

f

Z
), (3)

xR = xc − (
tx
x

f

Z
), (4)

where xc is the horizontal coordinate of the intermediate view.
xL and xR are the horizontal coordinates of the left-eye view
and right-eye view, respectively. Z is the depth value, f is
camera’s focal length and tx is the human-eye distance.

2.4. Tennis Video 2.0

Tennis Video 2.0 (TV2) is a new presentation of sports
videos [2], which brings three properties to enhance viewing
experience—Structure, Interactivity, and Scalability. Struc-
ture allows people to browse game videos and watch high-
lights immediately. Interactivity provides people with func-
tions to watch enriched game video rendered in real-time.
Scalability enables the video to be scalable in the bitstream
size with the video quality maintained. The key technique in
TV2 is to render the foreground objects on the background
scenes. The computation of video rendering is based on the
perspective transformation, x

y
w

 =

 m0 m1 m2

m3 m4 m5

m6 m7 1

 xb
yb
1

 , (5)

where mi is the perspective parameter, and (xb, yb) and
(x/w, y/w) are the coordinates in the background scene and
rendering view, respectively.

2.5. Tennis Real Play

Tennis Real Play (TRP) is an interactive tennis game sys-
tem constructed with models extracted from videos of real
matches [4], and the key techniques include video-based
player rendering and court rendering. The rendering model of
TRP is more complex than above applications, which needs
to build the 3D structure of background scene and renders the
frame by adjusting the intrinsic and extrinsic parameters of
the camera. The equation is shown below. x

y
1

 ∼
 f0 0 x0

0 f0 y0
0 0 1

 [R | t
]

X
Y
Z
1

 , (6)

where f0 is camera’s focal length and (x0, y0) is the offset
coordinate of intrinsic parameters. The rotation matrix R and
translation matrix t are the extrinsic parameters. By mod-
ifying these camera parameters, a virtual 2D scenes can be
rendered from 3D structure in any viewing angle.

3. ANALYSIS OF HARDWARE ARCHITECTURE

3.1. Computation Analysis

There are several challenges while implementing and inte-
grating these IBR applications into an uniform computation

Table 1. Average transmission bandwidth (bits/s) of supporting applications under various cache sizes.

PA CM DIBR TV2 TRP

Memory Bandwidth 6.45×109 3.93×109 6.62×109 5.40×109 4.27×1010
Memory Bandwidth with Cache Size 128 bits 2.02×109 1.66×109 2.57×109 2.75×109 1.45×1010
Memory Bandwidth with Cache Size 512 bits 7.04×108 3.73×108 6.43×108 8.59×108 4.14×109
Memory Bandwidth with Cache Size 2048 bits 7.04×108 3.54×108 6.43×108 8.47×108 4.12×109

The average transmission rate of DDR-200 is 3.36×109 bits/s in our system.

engine. The first step of architecture analysis is to find the
critical computation among these IBR applications. We find
that the projection transform in (6) of TRP is the heaviest
computation, and the equation can be further reduced as the
following equations.

x =
m0x

′ +m1y
′ +m2

m6x′ +m7y′ + 1
, (7)

where mi are the product of rotation matrix, translation ma-
trix, and camera intrinsic parameters in (6). x′ and y′ are the
algebras ofX/Z and Y/Z, respectively. Note that (7) can also
support the perspective transform (5) in TV2 and the compu-
tation of viewing angle and slit image’s position in CM. Next,
(7) should have the capability of square root to support the
computation of panorama. The denominator of (7) are re-
formed as the following equations.

x =
m0x

′ +m1y
′ +m2

n
√
m6x′ +m7y′ + 1

+OX, (8)

where n equals to 2 for the computation of panorama, and n
equals to 1 for the rest applications. In addition, the addition
terms of OX is designed to support the computation of (3)
and (4) in DIBR.

3.2. Bandwidth Analysis of Memory Access

In each IBR application, a number of images are stored in the
memory for the rendering materials, and there needs rapidly
memory access to read these images. So, one of the chal-
lenges in designing IBR engine is how to design an architec-
ture to support the huge requirement of memory bandwidth.
We have the experiments to render a video with frame size
720×480 and 30 fps, and a DDR-200 is employed as the off-
chip memory, which can support the average transmission rate
3.36×109 bits/s. Table 1 shows the bandwidth analyses of the
supporting IBR functions. We find that the CM has the low-
est memory bandwidth, 3.93×109 bits/s, among these appli-
cations, but it is still higher than that DDR-200 can support.

Thus, we use two methods to reduce the bandwidth of
memory access: cache mechanism and data compression.
The cache mechanism in a hardware architecture is effective
for the bandwidth reduction because the repeated data can be

read from the cache but not memory. In other words, it can re-
duce the number of memory access. The larger size of cache
can increase the data’s hit rate and reduce the number of mem-
ory access, however the hardware cost also increases. We
have the experiments to observe the bandwidth reduction un-
der various cache sizes. The analysis results in Table 1 show
that all the memory bandwidths are obviously decreased with
the design of cache. We also find that the effects of band-
width reduction are unapparent when the cache size is larger
than 512 bits. Nevertheless, the memory bandwidth of TRP is
still higher than that of DDR-200 can support after using the
cache mechanism.

The second method employs the compression technique
to reduce the bandwidth by transmitting the data with the mi-
nor size. A number of previous works had proposed meth-
ods for data compression. For the properties of IBR appli-
cations, the compression method needs to have the following
characteristics: 1. the minimum compression ratio should be
4.32 times to meet the bandwidth requirement of TRP with
cache size 128 bits; 2. the ability of data random access and
fixed rate of data compression; 3. low decoding latency to
reduce the access time. We find that S3 Texture Compression
(S3TC), the compression standard mainly used in graphics,
can meet above requirements. The idea of S3TC is to break a
texture map into 4× 4 pixels as a texel, and each pixel in the
texel is represented by 3 bits to achieve the compression rate
4.8 times. However, S3TC is a lossy compression method
and the PSNR drop of compression results are discussed in
Section 5.

4. DESIGN OF HARDWARE ARCHITECTURE

Fig. 2 shows the proposed architecture of IBR Engine con-
sisted of Projection Engine, Prefetch Engine, and Pixel En-
gine. Note that the First-In-First-Out (FIFO) buffers between
each engine store the processing results to the balance the
throughputs among different engines.

4.1. Projection Engine

The function of Projection Engine is to support the compu-
tation of image projection in (8). Fig. 3 shows the recon-
figurable architecture, consisting of 4 multipliers, 5 adders,

PA.

OX

SR
PA.

fy y x ff m4 m5 x H/21

SR
PA.

m7tx y Z yf 2 xc1

SR

x' y'm0 m1 1m2 x' m6 y' m7 m4 m5 OX

SR

D

D

0

1

x''x' m6m0 y''y' m7m1m8m2

Fig. 3. Reconfigurable structure and folding architecture of Projection Engine.

Off-Chip Memory (DRAM)

Projection
Engine

Prefetch
Engine

Pixel
Engine

System Bus

FI
FO

IBR Engine

ctrl ResultData

FI
FO

Addr

Fig. 2. Proposed architecture of IBR Engine.

1 divider and Look-Up-Tables, to support various process-
ing flows. Note that the trigonometric functions and square
root functions are not implemented in the combinational cir-
cuits due to high circuit complexity and high power consump-
tion. In the IBR applications, the input values of trigonomet-
ric functions and square root functions are on a fixed range, so
the Look-Up-Table, like the SR in Fig. 3, is an alternative so-
lution to implement these functions in considering the circuit
complexity and power consumption.

To further improve the hardware utilization and decrease
hardware cost, we use the folding architecture to reduce the
circuit area into a half and also strike a better balance of the
throughput between Projection Engine and Prefetch Engine.
The folding architecture is shown in the right part of Fig. 3.
With the folding architecture, Projection Engine has the re-
duction in the circuit size but also has a half throughput than
the original architecture. The processing results of Projection
Engine are sent to the FIFO buffer for further rendering pro-
cesses. A demo video for the reconfigurable architecture is
available on the website1.

1http://media.ee.ntu.edu.tw/larry/vre/

4.2. Prefetch Engine

The function of Prefetch Engine is to read the rendering ma-
terials from the memory after receiving the projection coordi-
nates from Projection Engine. As shown in Fig. 2, Prefetch
Engine would send an address to the off-chip memory for the
data access, and the data would be transferred to IBR En-
gine after several cycles. The architecture of prefetch Engine
includes cache mechanism and compression scheme as the
mentions in Section 3.2. From the IBR applications, we find
that the earlier the data stored in a cache, the less chance it
will be used in the future. Thus, a FIFO mechanism, the ear-
liest data stored in the cache would be first removed when the
latest data inputs, is employed in designing the cache. Ac-
cording to the analysis results in Section 3.2, a 128-bits cache
is designed in the Prefetch Engine in considering the hard-
ware cost and the bandwidth reduction rate.

For the design of compression scheme, S3TC mentioned
in Section 3.2 is adapted to further reduce the memory band-
width. The primary computation of S3TC is to decode the
16 pixels in a texel, and it can be seen that each pixel value
is the interpolation result according to the index between the
maximum label and minimum label in a texel. To increase the
throughputs of Prefetch Engine, we use 16 decoding units for
the parallel computation.

4.3. Pixel Engine

The function of Pixel Engine is to calculate the pixel values on
the rendering frame. For the algorithm using backward warp-
ing scheme like PA, CM, TV2 and TRP, each pixel value on
the rendering frame should be interpolated with 4 pixel values
on the projection positions. The computation of pixel interpo-
lation adopts the bilinear interpolation. For forward warping
schemes, such as DIBR, the reference pixel will be mapped to
a pixel position according to the pixel’s disparity. However,
some holes are on the rendering frame because of the differ-

ent sampling resolution between the input and output images.
To perform occlusion detection, we put a buffer with 64 bits
in Pixel Engine. Because pixels only move in horizontal di-
rection and the new coming pixel will always be at the right
side of current pixel in left-eye view in DIBR, we can easily
check whether current rendering block contains holes or not.
If there are holes, we can simply use neighbor’s pixel value to
interpolate the holes. For multi-layer-based rendering, such
as TRP, a weighting computation is also included in Pixel En-
gine to support the visual effects of alpha blending.

5. EXPERIMENTAL RESULTS

5.1. Specification and FPGA Implementation

Table 2 shows the specification and implementation details of
IBR Engine. Here we use TSMC 0.18µm process technology
for circuit synthesis and implement the design on the FPGA,
XilinX Virtex5, for the function verification. Note that the
size of non-combinational circuit is larger than the combina-
tional circuit due to the Look-Up-Tables in Projection Engine,
cache in Prefetch Engine and FIFO buffers between engines.
The design runs at 100 MHz and renders 30 fps with video
resolution 720×480 to achieve real-time requirement.

Table 2. Specification and implementation of IBR Engine.

Specification Design on FPGA

Technology TSMC18 XilinX Virtex5
Clock Rate 100 MHz 63.2 MHz
Gate Count 89.7 K Gates 12.7 K Slices

Memory 499.7 K Gates 47.0 K Slices
Power 61.29 mW Not Available

Rendering Size 720× 480 720× 480
Frame Rate 30.3 fps 21.9 fps

5.2. Analysis of Hardware Utilization

Hardware utilization is one of the indexes to reveal the design
quality. The analysis results show that Prefetch Engine and
Pixel Engine have very high utilization rates in all support-
ing IBR applications, but Projection Engine has the relative
lower rate. The utilization rates of IBR Engine in each ap-
plication are listed in Table 3, and the average rate is 74.9%.
In order to increase the hardware utilization, we employ the
folding architecture proposed in Section 4.1. The circuit size
of Projection Engine is reduced from 49920 gate counts to
33024 gate counts, and the average hardware utilization of
IBR Engine increases to 81.2%. Note that the throughput of
Projection Engine reduces to a half by using folding archi-
tecture, but the system throughput has no reduction due to
the critical throughput in Prefetch Engine. With the design
of FIFO buffers in Fig. 2, the bubble cycles from the variant

throughputs of Prefetch Engine can be removed, and system
throughputs are increased 27.4%

5.3. Analysis of Bandwidth Reduction

The bandwidth of memory access is effectively reduced by
using a 128-bits cache. Table 3 shows the reduction rates of
each application and the average rate is 60.6%. As the men-
tions in Section 3.2, the bandwidth of TRP is still higher than
the maximum bandwidth that DDR-200 can support. To fur-
ther reduce the bandwidth, S3TC is used to compress the data
and achieve much lower bandwidth, and the average reduc-
tion rate is 91.8%. However, S3TC is a lossy encoder and the
video quality would be decreased. Table 3 reveals that the av-
erage PSNR of compressed video is 36.8. In our opinion, it is
a trade-off between memory bandwidth and video quality in
using data compression. However, the data compression can
be removed from the IBR Engine if using an off-chip memory
with supporting higher bandwidth like DDR2-200.

Table 4. Rendering abilities (fps) of CPU and IBR Engine.

PA CM DIBR TV2 TRP Av.

CPU 4.0 3.4 2.4 2.8 2.1 2.9
IBR Engine 39.0 49.0 30.6 34.6 30.3 36.7

Ratio 9.8 14.4 12.8 12.4 14.4 12.7

5.4. Comparison

Here we use Intel R© Core
TM

2 Duo, running at 2.83 GHz, as
the CPU platform to perform IBR applications with rendering
size 720×480. Table 4 shows the rendering results and per-
formances between CPU and IBR Engine. The average ren-
dering frame rate of CPU is only 2.9 fps because IBR applica-
tions need complex computation in the projection transform
and heavy bandwidth requirement of memory access. Com-
paring to the CPU architecture, IBR Engine is specific for the
computation of projection transform and the architecture of
memory access, and therefore it can achieve the average ren-
dering rate 36.7 fps. In other words, the computational ability
of IBR Engine is 12.7 times than that of CPU in running these
IBR applications.

As the comparison of previous works, Yang et al. had
used graphics hardwares, two NVIDIA GPU: Quadro2 Pro
and GeForce3, to process the scene construction [7], which is
one of IBR applications. To compare the performance, IBR
Engine processes the computation of 3D warping, the same
experiments in [7]. The rendering abilities of Yang’s work
and IBR Engine under different rendering sizes are shown in
Table 5. We find that IBR Engine has the obviously advan-
tage of rendering ability in the lower rendering size, and it still
has 2.2 times performance than Quadro2 Pro under frame size

Table 3. Analysis of hardware utilization, bandwidth reduction and quality of rendered video.

PA CM DIBR TV2 TRP Av.

Hardware Utilization (%) 73.4 68.1 59.7 86.2 87.3 74.9
Hardware Utilization with Folding Architecture (%) 84.5 79.2 73.3 84.0 85.0 81.2

Bandwidth Reduction with Cache 128 Bits (%) 68.7 57.8 61.2 49.1 66.0 60.6
Bandwidth Reduction with Cache 128 Bits and S3TC (%) 93.5 91.2 91.9 89.4 92.9 91.8

Quality of Rendered Video after Compression (PSNR) 37.6 37.7 37.8 35.8 35.3 36.8

Table 5. Rendering abilities (fps) of GPU and IBR Engine.

Rendering Size 128× 128 256× 256 512× 512

Quadro2 Pro 62.5 32.3 12.2
IBR Engine 434.8 108.7 27.2

Ratio 7.0 3.4 2.2

GeForce3 25.0 18.2 6.4
IBR Engine 434.8 108.7 27.2

Ratio 17.4 6.0 4.3

512×512. As the comparison of circuit size, the gate counts
of Quadro2 Pro and GeForce3 are 3.13M and 7.13M, respec-
tively. However, IBR Engine has only 0.59M gate counts.
It shows that the proposed IBR Engine has higher compu-
tation ability and smaller circuit size than Quadro2 Pro and
GeForce3 in processing the IBR applications.

6. CONCLUSIONS AND EXTENSIONS

To the best of our knowledge, we design the first hardware ar-
chitecture specific for the computation of IBR and implement
the circuit on the FPGA. Because the computations of IBR
are different from various applications, we employ the recon-
figurable architecture to perform various rendering schemes.
Next, a hardware sharing is introduced to increase the hard-
ware utilization. To solve the heavy requirement of memory
bandwidth, we insert cache mechanism to reduce the number
of memory access and use data compression to decrease the
size of data transmission. The experiments show that the pro-
posed IBR Engine can support various IBR applications with
outstanding rendering abilities and low hardware cost.

Although only five IBR applications are introduced in
this paper, the IBR Engine is able to support the 3D ren-
dering model and more applications can be performed on it,
like photo tourism [3] and video texture [8]. However, there
are still some limitations of the proposed IBR Engine, which
can not support the application with computation complexity
higher than 3D rendering model, such as 4D light field render-
ing [9]. The possible extensions of IBR Engine are to support
more IBR applications and improve the rendering resolution

to high definition with 60 fps.

7. REFERENCES

[1] H.-Y Shum, S.-C. Chan, and S. B. Kang, Image-Based
Rendering, Springer, 2007.

[2] J.-H. Lai, C.-L. Chen, C.-C. Kao, and S.-Y. Chien, “Ten-
nis video 2.0: A new presentation of sports videos with
content separation and rendering,” Journal of Visual
Communication and Image Representation, vol. 22, no.
3, pp. 271–283, 2011.

[3] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism:
Exploring photo collections in 3d,” ACM Transactions on
Graphics, vol. 25, no. 3, pp. 835–846, 2006.

[4] J.-H. Lai, P.-C Wu, C.-L. Chen, C.C. Kao, and S.-Y.
Chien, “Tennis real play,” in IEEE International Con-
ference on Consumer Electronics, 2011, pp. 275–276.

[5] H.-Y. Shum, K.-T. Ng, and S.-C. Chan, “A virtual re-
ality system using the concentric mosaic: Construction,
rendering, and data compression,” IEEE Transactions on
Multimedia, vol. 7, no. 1, pp. 85–95, 2005.

[6] C. Fehn, “Depth-image-based rendering (dibr), compres-
sion and transmission for a new approach on 3d-tv,” in
Proceedings of SPIE Stereoscopic Displays and Virtual
Reality Systems XI, 2004, pp. 93–104.

[7] R. Yang, G. Welch, and G. Bishop, “Real-time
consensus-based scene reconstruction using commodity
graphics hardware,” Computer Graphics Forum, vol. 22,
no. 2, pp. 207–216, 2003.

[8] A. Schodl, R. Szeliski, D. H. Salesin, and I. Essa, “Video
textures,” in Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, 2000,
pp. 489–498.

[9] M. Levoy and P. Hanrahan, “Light field rendering,” in
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, 1996, pp. 31–42.

