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Abstract—The difficulty of vision-based posture estimation
is greatly decreased with the aid of commercial depth camera,
such as Microsoft Kinect. However, there is still much to
do to bridge the results of human posture estimation and
the understanding of human movements. Human movement
assessment is an important technique for exercise learning in
the field of healthcare. In this paper, we propose an action
tutor system which enables the user to interactively retrieve
a learning exemplar of the target action movement and to
immediately acquire motion instructions while learning it in
front of the Kinect. The proposed system is composed of two
stages. In the retrieval stage, nonlinear time warping algorithms
are designed to retrieve video segments similar to the query
movement roughly performed by the user. In the learning stage,
the user learns according to the selected video exemplar, and the
motion assessment including both static and dynamic differences
is presented to the user in a more effective and organized way,
helping him/her to perform the action movement correctly. The
experiments are conducted on the videos of ten action types,
and the results show that the proposed human action descriptor
is representative for action video retrieval and the tutor system
can effectively help the user while learning action movements.

Index Terms—Feature extraction, human action, human skele-
ton, motion assessment, nonlinear time warping, video retrieval.

I. INTRODUCTION

FOR the very beginner who wants to learn dance moves
or the patient who needs to do rehabilitation exercises

everyday, it would be great to have a professional instruc-
tor to teach him/her how to perform each action movement
correctly. However, it is uneconomical to hire a human tutor
every time he/she practices. In recent years, applications devel-
oped based on Kinect are getting popular since human poses
can be more easily estimated based on the sensed RGB-D
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information. Dancing games such as LET’S DANCE with
Mel B [1], Dance Central [2], and Just Dance [3] are designed
for entertaining purposes so that players can have fun from
doing basic dance moves or performing freestyle movements
according to the designated dance moves. Inspired by theses
games, we aim to develop a real-time action tutor system for
analyzing the user’s movements captured by Kinect and giv-
ing detailed motion instructions. Compared to learning with
a human tutor/instructor, learning in front of the proposed
action tutor system would make the user feel less embarrassed
especially when he/she performs wrong movements.

Different from conventional real-time feedback systems based
on the Kinect sensor (such as the previously mentioned danc-
ing games), the proposed action tutor system designed for the
beginner/patient gives more detailed motion instruction of each
body part, and both spatial and temporal correlation among
postures are considered in the movement assessment. To be pre-
cise, conventional dancing games define several key postures
for each action and the correctness score increases as long as
the user performs postures spatially similar to the predefined
ones in limited time, while the temporal correlation among
postures is seldom considered. Besides, as an action tutor, our
system automatically reminds the user to learn an action again
once it detects an awfully inaccurate movement. In addition to
helping the user correctly learn an action movement, our sys-
tem also facilitates him/her to find the target learning exemplar
in a large video database. The user can just perform a query
action resembling the target movements in his/her mind, and
the system will recommend a list of similar action videos (also
captured by Kinect) in the database by the technique of action
video retrieval. The user then selects one video from the list as
the learning exemplar and follows it to practice. In the mean
time, the system gives detailed movement assessment so that
the user can perform exercise movements by himself/herself as
if accompanied by a private human tutor/instructor.

The most significant challenge of human action analysis
is to account for the variations which could highly affect
the observations. Sheikh et al. [4] explicitly pointed out the
possible variability in terms of three transformations.

1) Viewpoint Transformations: The position and the ori-
entation of the camera should not affect the analysis
results.

2) Anthropometric Transformations: An action can be per-
formed by people of different height, weight, or gender.
Therefore, the action analysis method should be invari-
ant to human anthropometric ratios.
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3) Temporal Transformations: The temporal transforma-
tions may be caused by different camera frame rates
or different users executing the same action in vari-
ous speeds. For action recognition/retrieval, we hope the
analysis method can tolerate these temporal variations to
some extent. In contrast, for movement assessment, we
expect to highlight the difference in action execution
speed so that the user can perform his/her action with
proper speed to prevent sports injuries.

We summarize the technical contributions of this paper as
follows.

1) We design a discriminative pose descriptor, including
information of the body-joint configuration and the
shape/depth distribution of the human silhouette, to
reflect the difference between various postures.

2) A novel way to retrieve and learn target exercise move-
ments is proposed with the aid of Kinect, and the
retrieval method can deal with the temporal transforma-
tion by nonlinear time warping approaches which map
the time alignment problem between two multivariant
action sequences to the substring finding problem. In
most of the existing systems [5], a presegmented step is
required to indicate the exact start/end time positions of
the actions before calculating pairwise action similarity.
By contrast, our system removes this constraint through
applying the substring finding technique.

3) We also study the nature and intrinsic limitations
of different video matching methods, including cross-
correlation alignment, dynamic time warping (DTW)
and approximate string matching (ASM). Based on our
investigation, a modified version of DTW is proposed
to realize action video retrieval.

The remainder of this paper is organized as follows. We
briefly introduce related literatures on Kinect and human
action analysis in Section II. Section III expounds the frame-
work of the proposed action tutor system from the user’s and
the system’s perspectives, respectively. Section IV depicts the
input skeleton model tracked and estimated by the full body
analysis middleware of the OpenNI framework [6], [7]. We
detail the techniques of similarity measurement and movement
evaluation in Section V. The experimental results are shown
in Section VI, and conclusions are given in Section VII.

II. RELATED WORK

A. Survey of Kinect

Microsoft released Kinect (a motion sensing device featured
with RGB camera, depth sensor, and multiarray) in 2010 and
led multimedia applications to a new trend. Kinect is widely
used in the industry/research fields of games, robotics, com-
puter graphics, image processing, computer vision, human-
computer interaction, and augmented reality [8]. For example,
Packer et al. [9] utilized Kinect to recognize complex, fine-
grained human actions involving the manipulation of objects.
Xia and Aggarwal [10] presented a filtering method to extract
local spatio-temporal interest points from depth videos cap-
tured by Kinect and further build a novel depth cuboid
similarity feature to describe the local 3-D depth cuboid.

This feature was then applied on activity recognition appli-
cation [10]. Hsu et al. [11] combined Kinect and Bluetooth
techniques to build an smart conference system. The Kinect
was used as a gesture recognition device to detect each
person’s skeletons with multifunctions, and a personalized
Bluetooth supported equipment was employed to identify each
participant’s identity. Ren et al. [12] applied kernel descrip-
tors, superpixel MRF, and a segmentation tree to achieve scene
labeling with RGB-D images. Exploiting the depth informa-
tion, Liu et al. [13] facilitated both camera motion estimation
and frame warping to make the video stabilization a much
well posed problem. Yang et al. [14] took advantage of both
color and depth information to predict head pose and gener-
ate extra constraints at the face boundary. The face shapes are
then tracked based on a nonlinear manifold. Shen et al. [15]
proposed an exemplar-based method to correct the initial
pose estimation result by learning an inhomogeneous sys-
tematic bias within specific human action domain. However,
Kinect does not always capture reliable depth information and
researchers start to improve the depth map captured by Kinect.
For example, Shen and Cheung [16] proposed a depth cor-
rection and completion algorithm by using depth layers to
account for the differences between foreground objects and
background scene, the missing depth value phenomenon, and
the correlation between color and depth channels. Given a
single RGB-D image, Barron and Malik [17] also designed
an approach to produce an improved depth map and then
applied it to recover intrinsic scene properties from a single
image.

B. Survey of Human Action Analysis

Human action analysis is a valued research area in computer
vision because of its wide-ranging applications, including
visual surveillance, human-computer interaction (HCI), motion
analysis, and gaming. A typical process of vision-based human
action analysis can be composed of four steps, namely human
detection, human tracking, action recognition/retrieval, and
high-level action evaluation [18]. Methodologies of action
recognition/retrieval can be classified into single-layered
approaches and hierarchical approaches [19]. Single-layered
approaches analyze human actions of short movements based
on a sequence of images with sequential characteristics, while
the hierarchical approaches describe high-level actions as a
combination of sub-movements and are suitable for analyz-
ing human interactions. Among all single-layered approaches
mentioned in [19], exemplar-based sequential approaches
(which use DTW approach to deal with execution rate varia-
tion) can provide more flexibility and is able to cope with the
problem of lacking training data.

Pose estimation is an important technique for action recog-
nition/retrieval since actions can be modeled by the move-
ments of body parts. Using color images captured by a single
camera, Ramanan [20] applied conditional random field to rep-
resent the person as a pictorial structure composed of body
parts tied together. Ferrari et al. [21] further integrated the
pictorial structures among multiple frames with temporal and
spatial information to reduce the search space and improve
the estimation performance. The estimation results are then
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applied to shot retrieval of movies either by querying on a
single frame with the desired pose, or through a pose clas-
sifier trained from a set of pose examples [22]. Ferrari’s
method uses high-dimensional pose descriptors to represent
either full probability distributions over possible part posi-
tions and orientations, or soft-segmentations of the parts,
which is not practical for real-time retrieval task. In con-
trast, Jammalamadaka et al. [23] used a simple and effective
representation based on a single absolute orientation of each
part to achieve real-time pose retrieval. The recent hardware
improvement of depth cameras has spurred the progress of
human action analysis. People in top tier technical compa-
nies, such as HP and Microsoft, also endeavor to estimate and
recognize human poses in real-time with the aid of the depth
cameras (such as Kinect) [24], [25]. Shotton et al. [25] trans-
formed the complex pose estimation problem into a simpler
per-pixel classification problem. They trained very deep ran-
domized decision forests using highly varied and large training
dataset of depth images to achieve state-of-the-art recognition
accuracy in super real-time.

Compared to human pose estimation, human action retrieval
and human action recognition, there are extremely fewer works
addressing the problem of high-level action evaluation, which
is important for advanced applications such as the motion
instruction systems used for learning dance moves or rehabili-
tation exercises. Raptis et al. [5] tried to classify dance moves
in real-time and answer how well does the user perform the
dance move. They used angular skeleton to represent the joint
configurations, and then classified the input sequence into a
defined dance move on the basis of a cascaded correlation-
based classifier. After classification, DTW is used to form
the distance metric between two dancing sequences and give
a final score in terms of the overall performance. However,
Raptis’ work is not practical in general conditions since it
highly relies on the assumption of musical beat alignment,
and both the input and the compared video sequences should
be roughly segmented in advance for calculating similarity.
Alexiadis et al. [26] also focused on the evaluation of dance
performance. They calculated three different scores, i.e., joint
positions, joint velocities, and 3-D flow error, to wit the cor-
rectness of the action. The scores together with joint positions
are presented in a virtual 3-D gaming environment, allow-
ing the user to view and compare their movements with
the teacher’s from different viewpoints. Despite presenting an
attractive visualization software, Alexiadis’s system needs to
process the data off-line. Thus, the user could only review
the previously performed actions instead of getting real-time
feedback while performing the movements.

Even though the complexity of the joint estimation process
is reduced with the aid of the depth camera, finding repre-
sentative feature descriptor of the posture, retrieving exact
video segment of a given human action, and further evaluating
the user’s action performance in real-time with straightfor-
ward motion instructions are still noneasy tasks. Therefore,
based on the skeleton estimation results obtained by the Kinect
sensor and the OpenNI framework, we investigate into the
problems of human movement retrieval and assessment to
build a real-time human action tutor system.

Fig. 1. From the user’s perspective, the system can be divided into two stages,
namely the retrieval stage, which searches target videos using the input action
sequence, and the learning stage, which enables exercise learning by analyzing
the user’s movements based on the selected learning exemplar.

Fig. 2. Technical modules of the proposed action tutor system.

III. SYSTEM FRAMEWORK

We outline the system framework from two different per-
spectives. First, we introduce the system from the user’s point
of view by describing the input/output and the operation pro-
cedures. Then, we turn to the system internal and characterize
functions of the core computational modules.

A. User’s Perspective

From the user’s point of view, the proposed system is oper-
ated through two stages as illustrated in Fig. 1. The first
stage is the retrieval stage. In most of the existing motion
assessment or instruction systems, before starting learning a
specific motion, the user has to manually search the entire
video database for the target movement. As the database grows
abundantly, this search task gets more tedious and finally
causes the user much burden. In contrast, using our system,
the user could retrieve the movement they want to practice
by simply performing it. To be precise, a target movement is
roughly performed by the user and captured by Kinect or other
3-D sensors, resulting in a query action sequence. The system
then takes this query sequence as input to search for similar
video clips in the motion video database (each element in the
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Fig. 3. (a) Coordinate system and human joint definitions in the OpenNI framework (for a user facing the sensor). (b) Fifteen joints used for movement
analysis. Note that only the joints highlighted by a red halo are utilized to calculate the PCA of the torso direction. (c) Spherical coordinate system.

database is also a human action video captured by Kinect)
and returns a ranked list consisting of segmented candidate
sequences for the user to select the exact learning exemplar.
The second stage is the learning stage. After choosing the
exact learning exemplar, the user could follow and imitate it
with real-time feedback pointing out body joints which are not
posed correctly. The system gives the user motion instruction
to correct the most inaccurate body joint. Moreover, the sys-
tem can automatically play back the learning exemplar while
the user fails to follow the movements. A detailed performance
report will be presented in the end of the learning stage.

B. System’s Perspective

Fig. 2 introduces the proposed action tutor system in
terms of the three technical modules, namely preprocessing,
similarity measurement, and evaluation/presentation modules.
The system takes user’s action sequence captured by Kinect
(or other 3-D sensors) as input. The preprocessing mod-
ule directly adopts the joint-position prediction and human
silhouette extraction algorithms proposed in the OpenNI
framework [6], [7] to obtain a sequence of joint-matched skele-
tons and human silhouettes. The skeleton/silhouette estimation
technique is not the main focus of this paper and can be
replaced by other estimation algorithms. The similarity mea-
surement module then extracts representative features from
the joint-matched skeleton sequence and the human silhouette
sequence to measure the pose distance and action similarity
between the user’s query and each video in the motion video
database (at the retrieval stage) or between the test action and
the selected learning exemplar (at the learning stage). In the
evaluation and presentation module, the pose distance results
are integrated into an intuitive visualization to suggest the user
how to adjust body parts that are not correctly posed, and the
action similarity is output as a dynamic assessment of the
user’s action. The technical details of the system components
will be described in Section V.

IV. PREPROCESSING

With the aid of Kinect and the full body analysis middle-
ware developed in the OpenNI framework [6], [7], we can
obtain the result of human pose estimation represented by

the joint-matched skeleton and human silhouette in real time.
The skeleton is composed of fifteen joints as illustrated in
Fig. 3(a), and the position/orientation of each joint is esti-
mated with a corresponding confidence score. These joint
positions are given in the real world coordinates and mea-
sured in mm with +X pointing to the right, +Y pointing up,
and +Z pointing to the direction with increasing depth with
respect to the Kinect sensor. However, the estimation results
of some joints are not reliable and are often predicted with
zero confidence. For example, the leg tracking is unstable and
noisy unless the user stands with legs separated. Therefore,
in this paper we propose two strategies to compensate the
wrongly estimated joint positions. First, we apply weighted
pose similarity measurement to decrease the similarity score
of wrongly estimated joints (see Section V-C). Moreover, we
also extract features from human silhouette to provide more
accurate description of a human pose. Notice that the skele-
ton/silhouette estimation module can be replaced by other
robust estimation algorithm. Considering the trade-off between
estimation accuracy and real-time interaction, we choose the
OpenNI framework to acquire skeleton/silhouette information
for supporting the following analyses.

V. SIMILARITY MEASUREMENT AND MOVEMENT

EVALUATION

At the retrieval stage, the system has to not only search for
videos containing the target action movement but also locate
the time duration where the target action movement exactly
occurs. According to the skeleton model and human silhouette
obtained by the OpenNI framework, we construct representa-
tive features for describing human postures, and then define
the distance between two static poses. Further, the technique
of nonlinear time warping is utilized to calculate the similarity
between two dynamic action videos, and the concept of sub-
string finding is applied to identify the start/end time locations
of the target action movement.

A. Skeleton Feature Construction

Given the skeleton model of a pose, we consider the
local joint features and the global torso features to more
appropriately describe a pose.
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Fig. 4. Example of posture adjustment. (b) Incorrect posture can be adjusted
to fit (a) target posture by only rotating the right shoulder.

1) Local Joint Features: There are several aspects that need
to be considered when representing the local position for each
joint. First, the feature descriptor should not be affected by
static transformations (i.e., the viewpoint transformations and
the anthropometric transformations). Raptis et al. [5] have
shown that using relative positions between joints instead of
using absolute positions originating at the sensor is less depen-
dent on the viewpoint. As shown in Fig. 3(b), the articulated
skeleton model of the body can be taken as a tree rooted at
Neck with other body parts radiating from it, and each joint
can be represented by the relative position with respect to its
parent joint. Moreover, the domain knowledge of biomechan-
ics indicates that all diarthroses (movable joints) are synovial
joints, which can be categorized into six different types, i.e.,
planar joint, hinge joint, pivot joint, condyloid joint, saddle
joint, and ball-and-socket joint [27]. For example, the shoul-
der joint can be modeled as the ball-and-socket joint in which
the distal bone is allowed to move around almost all directions.
Even though we can use translations and rotations based on
the X-, Y-, Z-axes (in a total of six degrees of freedom) to
describe the relative relationship between two joints, the rel-
ative translations are usually much smaller than the relative
rotations. Thus, the relative translations are ignored to sim-
plify the calculation and we focus on the discussion of relative
rotations.

The relative rotation among two joints can be calculated in
the spherical (SPH) coordinate system, which transforms the
Cartesian coordinates (x, y, z) into (r, θ, φ). Taking Fig. 3(c)
as an example, using Right Shoulder as the reference point of
Right Elbow, we could calculate the elevation θ with respect
to the X-Z plane (−(π/2) ≤ θ ≤ (π/2)), the azimuth φ with
respect to the +X direction (−π ≤ φ ≤ π), and the radius r
between Right Elbow and Right Shoulder. Note that the radius
element r is not considered in this paper because each skele-
ton has to be normalized so that the representation would not
be affected by human anthropometric ratios or the distance
between the user and the camera. Using the SPH representa-
tion, i.e., (θ, φ), the issue of anthropometric transformations
can be solved easily.

The second issue we have to tackle is illustrated in Fig. 4.
For two postures A and B, we may think the posture B is
incorrect because the Right Elbow joint and the Right Hand
joint are improperly posed compared with the target posture A.
However, the posture B can be easily adjusted to fit the target

Fig. 5. Original Cartesian coordinate system with axes [X, Y, Z] is rotated to
the object-view coordinate system with axes [X′, Y ′, Z′]. The torso direction
is represented by the principle components [Xt, Yt, Zt] obtained from the five
red joints related to the torso.

posture A by only rotating the right humerus and keep other
joints fixed in the same relative positions. This kind of relation-
ship cannot be captured by the SPH representation transformed
directly from the original Cartesian coordinates, i.e., (x, y, z).
A better choice would be using the object-view to describe
the joint positions. That is, before transforming to the SPH
coordinate system, the Cartesian coordinate axes of each child-
joint should be rotated by aligning the zenith direction with
the correspondingly preceding proximal bone. Fig. 5 shows
an example: using the Left Elbow joint as the reference point,
the axes of the original Cartesian coordinate system [X, Y, Z]
is first aligned with the left humerus, and the new axes of the
object-view coordinate system are notated as [X′, Y ′, Z′]. Then,
the Left Hand joint can be represented by the elevation θ ′ and
the azimuth φ′ calculated with respect to the X′–Z′ plane and
+X′ direction, respectively.

2) Global Torso Features: To more completely describe the
global characteristic of a given pose skeleton, we preserve the
torso direction information modeled by five joints related to
the torso, i.e., torso center, left/right shoulder, and left/right hip
joints. Principal component analysis (PCA) is applied to these
five joints in the original Cartesian coordinate system with axes
[X, Y, Z], and the obtained principal components are used to
be the three axes of the torso direction [5], i.e., [Xt, Yt, Zt], as
shown in Fig. 5. Each axis is a 3-D vector, resulting in a nine-
dimensional feature vector for describing the axes of a global
torso direction. To reduce the feature dimension but still keep
the same information, we represent the torso direction by three
Euler angles (α, β, γ ), which sequentially rotates the original
coordinate system with respect to the three axes [X, Y, Z] [28],
that is

R(α, β, γ ) = RZ(α)RY(β)RX(γ ). (1)

Moreover, the relation between the original Cartesian coor-
dinate system and the torso direction can be represented by

[
R
] [

X Y Z
] = [

X′ Y ′ Z′] (2)

which means the rotation matrix R can be calculated as

[
R
] =

⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ = [
X′ Y ′ Z′] [

X Y Z
]−1

. (3)
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Fig. 6. Illustration of how to construct silhouette features.

The Euler angles (α, β, γ ) can then be solved by [28]

α = tan−1 (r21/r11) (4)

β = tan−1
(

−r31

/√
r2

32 + r2
33

)
(5)

γ = tan−1 (r32/r33). (6)

The range of the arctangent can be extended to [0, 2π) by
the function provided in the C programming language.

B. Silhouette Feature Construction

We take the shape and depth distribution of human silhou-
ette into consideration to describe a human pose since joints
estimated by Kinect are not always reliable (especially when
the user’s joints are occluded by other body parts). Given a
human silhouette, we first find the centroid of all contour
points and divide the frame into |R| (|R| = 8 in our work)
regions by radiate lines emitting from the centroid (as illus-
trated in Fig. 6). The shape and depth features of the human
pose are then extracted as follows.

1) Shape Features: For each region Rr, we calculate two
descriptors to depict the shape characteristic of the human
silhouette in Rr. That is

HSr,1 = mean (dis(centroid, cpi)) (7)

HSr,2 = var (dis(centroid, cpi)) (8)

where dis(centroid, cpi) is the 2-D Euclidean distance between
the centroid and each contour point in Rr.

2) Depth Features: For each region Rr, we also calculate
two descriptors to depict the depth distribution of the human
silhouette in Rr. That is

HSr,3 = mean
(
depth(spj)

)
(9)

HSr,4 = var
(
depth(spj)

)
(10)

where depth(spj) is the relative depth between the centroid
and each silhouette point in Rr.

C. Pose Distance Measurement

Given two pose A and B, the distance between them can be
defined by

Dpose(A, B) = wskeleton

1 +
K∑

k=1
wk

[

�TD(A, B) +
K∑

k=1

wk�Ji(A, B)

]

+ wsilhouette�HS(A, B) (11)

where �TD(A, B) is the global skeleton difference defined
by the torso directions of A and B, �Ji(A, B) is the local

skeleton difference at the ith joint between A and B (K is the
total number of the considered local joints), and �HS(A, B) is
the human silhouette difference. wskeleton and wsilhouette control
the importance of skeleton and silhouette information, respec-
tively. We set both of them to be 0.5 in our work. wk weights
the influence of the local difference on each corresponding
joint, which can be set according to the application. In our
work, since the OpenNI framework extracts unstable and noisy
leg-joint positions, a smaller wk is assigned to each lower-body
joint and a larger wk is assigned to each upper-body joint.

The SPH representations obtained from the object-
view coordinates are utilized to calculate each local joint
difference, that is

�Ji(A, B) = 1

2

[
�θ ′

i (A, B) + �φ′
i(A, B)

]
(12)

�θ ′
i (A, B) = 1

π

∣∣θ ′
i (A) − θ ′

i (B)
∣∣ (13)

�φ′
i(A, B) = 1

π
min

(∣∣φ′
i(A) − φ′

i(B)
∣∣

2π − ∣∣φ′
i(A) − φ′

i(B)
∣∣) (14)

where 0 ≤ �θ ′
i (A, B),�φ′

i(A, B) ≤ 1. Moreover, the global
torso direction difference is calculated by

�TD(A, B) = 1

3

[
�α(A, B) + �β(A, B) + �γ (A, B)

]
(15)

where the �α(A, B), �β(A, B), and �γ (A, B) are calculated
in the similar way as �φ′

i(A, B). Since the joint estimation
results are not always reliable for the two Shoulder joints due
to occlusion. Therefore, we take two Hip joints into account
to more accurately find the torso direction and compensate the
erroneously measured pose distance resulting from the local
joint difference. The human silhouette distance is defined by

�HS(A, B) = 1

4|R|
|R|∑

r=1

4∑

d=1

�HSr,d(A, B) (16)

�HSr,d(A, B) = 1

dmax

∣
∣HSr,d(A) − HSr,d(B)

∣
∣ (17)

where dmax is a sufficiently large distance trained by our
dataset.

D. Action Similarity Measurement

Given a query action sequence Q and a compared action
video V in the database (the video V may be much longer
than the query Q and may be composed of multiple actions),
we measure the difference between them and find the exact
time duration where the query action Q occurs in the video V .
Three methods including cross-correlation, DTW, and ASM
are investigated in our work, and we propose a modified-DTW
method to meet the demands of our system.

1) Cross-Correlation: In the field of signal processing,
cross-correlation is commonly used to measure the similarity
and capture the shape alikeness between two waveforms. It
could be used to search for a shorter template signal in a long
signal by applying a time delay to the template signal. We uti-
lize this correlation-based method to locate the query action Q
in the video sequence V . Both Q and V are first normalized to
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lower the influence caused by the prior distribution (standard
deviation) of each element in the feature vector representing
a pose skeleton. For the ith element of the feature vector, the
normalized cross-correlation (NCC) score between Q and a
subsequence S (which has the same length with Q) of V can
be written as

corr [i] =

N∑

t=1
Qi(t)Si(t) − NQ̄iS̄i

√
N∑

t=1
Qi(t)2 − NQ̄i

2

√
N∑

t=1
Si(t)2 − NS̄i

2

(18)

where Q̄i and S̄i are the means of signals Qi and Si, and N is
the length of the query sequence Q.

Considering all elements in the L-dimensional feature vector
describing a pose, the overall correlation score between the
two sequences Q and S is

corr∗ = 1

L

L∑

i=1

corr [i]. (19)

A threshold Thcorr is used to detect high correlated subse-
quence S in V with respect to Q. However, directly comparing
two sequences frame-by-frame will suffer from the issue
of temporal transformations. Although we can simply apply
linear time-warping methods, such as up-sampling or down-
sampling beforehand, the correlation-based method still fails
when the two action sequences Q and S vary in not only the
overall execution duration but also the local execution speed
(caused by acceleration and/or deceleration during performing
the action). In contrast, nonlinear time-warping methods allow-
ing similar signal shapes to be matched even if they are out
of phase in the time axis would more appropriately measure
the similarity between two action sequences.

2) Dynamic Time Warping: DTW is a nonlinear time-
warping scheme which aims to find the best warping function
between two input signals with minimum total distance under
certain constraints. It could determine the similarity measure-
ment with tolerance to a certain degree of time variation
between sequences. Several constraints are often used to
reduce the search space and set a reasonable tolerance range.
For example, the monotonicity constraint prevents the warping
path from going back in time axis, and the boundary conditions
limit the warping path to start from the first time instance and
end at the last time instance for both the query sequence Q
and the compared sequence V . The DTW problem is often
solved by the divide-and-conquer approach and implemented
using the technique of dynamic programming. As illustrated in
Fig. 7(a), given the query sequence Q composed of successive
poses {q1, q2, . . . , qM} and the compared video sequence V
containing successive poses {v1, v2, . . . , vN}, a DTW table of
size M × N is created and its boundaries are set as infinity.
For 1 ≤ i ≤ M and 1 ≤ j ≤ N, each grid (i, j) is filled with a
minimum warping distance defined by

dw(i, j) = min

⎛

⎝
dw(i − 1, j − 1)

dw(i, j − 1)

dw(i − 1, j)

⎞

⎠ + cost(i, j) (20)

Fig. 7. DTW with different initializations of the boundary conditions and
various strategies of backtracking. (a) DTW. (b) Modified DTW.

where cost(i, j) is the difference between poses qi and vj, i.e.,
Dpose(qi, vj) defined in Section V-C. After filling the entire
table, the distance between Q and V are defined by dw(M, N).
The conventional DTW method then backtracks from the end
grid (M, N) to the start grid (1, 1) and reconstruct the entire
alignment path. With the detailed alignment between the two
sequences, the DTW-based similarity measurement is invariant
to the temporal transformation mentioned in Section I.

3) Approximate String Matching: ASM (also called fuzzy
string searching) is a special case of DTW and is originally
used to solve the string matching problem. Given the query
string Q composed of pose symbols q1, q2, . . . , qM and the
compared string V composed of pose symbols v1, v2, . . . , vN ,
ASM tries to find a substring S of V which has the smallest
edit distance to transform V into Q. In other words, ASM can
find the occurrence of the query pattern Q in a long sequence
V by calculating the minimum edit distance between Q and V .
More precisely, let de(i, j) denote the minimum edit distance
to transform the first j symbols of V into the first i symbols
of Q. At each symbol vj, the editing operations are as follows.

1) Match or Substitution: The pose symbol vj is matched
with pose symbol qi or is substituted by pose symbol qi

with an additional cost δ(qi, vj).
2) Insertion: There is an extra pose symbol qi in Q to be

considered, and we have to insert qi into V (which is
equivalent to deleting the symbol qi from Q) with an
additional insertion cost δ(ε, qi).

3) Deletion: There is an extra pose symbol vj in V to be
considered, and we have to delete vj from V with an
additional deletion cost δ(vj, ε).

ASM can be also solved by dynamic programming, and the
total edit distance at grid (i, j) is defined by

de(i, j) = min

⎛

⎝
de (i − 1, j − 1) + δ

(
qi, vj

)

de (i, j − 1) + δ (ε, qi)

de (i − 1, j) + δ
(
vj, ε

)

⎞

⎠. (21)

The match/substitution cost δ(qi, vj) is determined by the
pose difference Dpose(qi, vj) defined in Section V-C. Moreover,
the cost of inserting or deleting a pose symbol s is set to be a
constant value C = 0.5, which is the distance between pose s
and an empty pose ε.

With different initializations of the boundary conditions and
various ways of backtracking, ASM can be applied to two
kinds of matching, the entire string matching and the multi-
ple substring matching. As illustrated in Fig. 8(a), if we want



HU et al.: REAL-TIME HUMAN MOVEMENT RETRIEVAL AND ASSESSMENT WITH KINECT SENSOR 749

Fig. 8. ASM with different initializations of the boundary conditions and
various strategies of backtracking. (a) Entire string matching. (b) Substring
matching.

to match the query sequence Q against the entire string of
sequence V , the cost de(i, 0) (i.e., the cost of deleting the first
i symbols from Q) is set to be i ·C. Similarly, the cost de(0, j)
is set to be j · C. Moreover, the warping path of the entire
string matching is constrained by the backtracking path from
grid (M, N) to grid (1, 1). On the other hand, if we want to
find the duration where Q exactly occurs in V , the problem is
transformed to a substring matching problem, which means Q
may start from any place in V and there should be no penalty
for deleting the first j symbols from V . As shown in Fig. 8(b),
the cost de(0, j) is set to be zero, and the start/end points of the
backtracking path for substring matching are not constrained.
That is, we have to search the entire last row for the minimum
editing distance to find the best match result.

4) Modified DTW: Our system aims to find all video seg-
ments (with exact start/end time) having movements similar to
the query. However, conventional DTW have two main prob-
lems. First, the cost can only find one warping path between Q
and V . If the query movement Q appears more than once
in a long video V , we can only find one of them since the
backtracking step is simply applied once to trace the path start-
ing from the grid (M, N). Second, if the query movement Q
appears near the start of a video V1 and also appears near the
end of a video V2, the one in V2 might have much smaller sim-
ilarity score than the one in V1 even though these two video
segments are the same. That is because the boundary condition
d(0, j) given in conventional DTW are all infinity. Therefore,
we propose a modified DTW method, which keeps the dis-
tance function the same as the one in conventional DTW but
utilizes the boundary conditions/backtracking strategies as the
ones used for the ASM-based substring matching.

The major difference between DTW-based methods and
ASM-based methods is their points of view toward the inser-
tion and the deletion operations. Since ASM aims to solve the
string editing problem, when an insertion or a deletion occurs,
the distance function is set to be the distance of the preced-
ing path plus the difference between the current symbol and
an empty symbol. That is to say, it treats the extra symbol as
noise in essence and a fixed cost is adopted to lower the effect
caused by the noise. In contrast, the DTW method sets the
distance function to be the preceding distance plus the differ-
ence between the extra symbol and the current symbol. It can
be viewed as applying up- or down-sampling locally to com-
pensate for the missing information when insertion/deletion

occurs. In Section VI-B, we will compare the performance
between the substring matching method based on ASM and
the proposed modified DTW approach. At the retrieval stage
of our action tutor system, the user can choose the cross-
correlation method, substring matching version of ASM, or the
modified DTW to find similar video segments in the database.
Once the user chooses an exemplar video segment in the learn-
ing stage, the entire string matching based on ASM or the
conventional DTW can be selected to evaluate whether the user
successfully follows the movements of the learning exemplar.

E. Movement Evaluation and Presentation

As shown in the demo video,1 to clearly instruct the user
how to adjust his/her postures at the learning stage, we indi-
cate wrongly posed joints with red circles and display the rest
with green circles. The joint difference defined in (12) is used
to evaluate the correctness of each posed joint. Moreover, the
joint with the largest joint difference is accompanied with a
blue arrow pointing to the direction where it should be adjusted
to. The overall posture difference and the dynamic action sim-
ilarity at each time instance are also presented, where the
action similarity at the time instance i is calculated by applying
DTW to the video sequences composed of the corresponding
past N frames. When the dynamic action similarity at the time
instance i is smaller than THsim, the system will automatically
stop playing the learning exemplar and play back from the
(i−N)th frame. The playing back mechanism prevents the user
from skipping learning important movements while trying to
follow the learning exemplar.

VI. EXPERIMENT RESULTS

We conducted objective and subjective tests to evaluate the
performance of our system. First, we investigate what kind of
skeleton feature is the most appropriate choice for pose simi-
larity measurement. We then compare different nonlinear time
warping methods for action similarity measurement. Finally,
we report the results of the subjective experiments to evaluate
the overall performance of our action tutor system. An action
dataset2 containing movement videos of ten different actions
is collected for our evaluation. These ten actions are: 1) level
hand swing (LHS); 2) elevated hand swing (EHS); 3) arm
rotation (AR); 4) left–right elevated hand swing (LR-EHS);
5) golf-swing; 6) rod-swing; 7) pitch; 8) tai-chi; 9) jack; and
10) kick. Among these actions, 1)–4) are upper-body move-
ments of the Chinese Qigong exercise promoted by Meimen
Qigong Culture Center,3 and 5)–10) are actions with lower-
body movements. Moreover, some of these actions includes
occluded joints and fast movements (please refer to the action
dataset website). Each action was performed by 11 individuals
(7 males and 4 females) and each individual performs the same
action twice. The first performance contains only the assigned
action movement, while the second performance involves other

1Demo video of the proposed Action Tutor system:
http://www.youtube.com/TSMCActionTutor

2Action Dataset:
http://www.cmlab.csie.ntu.edu.tw/~trimy/MovementAssessment/HMRA.html

3Meimen Qigong Culture Center: http://www.mymeimen.org/
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TABLE I
NOTATIONS, CORRESPONDING FACTOR ATTRIBUTES, AND DIMENSIONS

OF DIFFERENT SKELETON DESCRIPTORS

movements before or after the assigned action movement. Both
the color and the depth information is recorded/encoded by
Kinect and OpenNI with the resolution of 640 × 480 and the
default frame rate of 30 frames/s.

A. Evaluation of Features

In Section V-A, we define skeleton-based features to dis-
tinguish actions in and out of the class. Here we further
investigate three different factors that might influence the
effectiveness of the skeleton feature.

1) Whether axes rotation is applied to local joint features,
i.e., X, Y, Z axes are rotated to X′, Y ′, Z′ or not.

2) Whether global torso direction is considered.
3) Whether joint selection is adopted.
Take the LHS action as an example, since this action mainly

focus on the movements of arms, we can select only Left/Right
Elbow and Left/Right Hand joints to represent the local joint
features [i.e., in (11), w′

ks for the Left/Right Elbow and Left/Right
Hand joints are set to be one and w′

ks for other joints are set
to be zero] or keep the information of all body joints (i.e., w′

ks
for all joints are set to be one). The notations, corresponding
factor attributes, and dimensions of different skeleton feature
descriptors are listed in Table I. Note that the position of the
root joint, i.e., Neck, is only used as the reference point for
other joints and is not included in the descriptors.

We apply NCC to the query action Q and a video
sequence V , and the correlation responses along the time axis
are used to visualize the performance of each skeleton-based
descriptor. Since we aim to investigate factors related to skele-
ton, silhouette features are not considered in calculating NCC
in this experiment. We take the LHS action as an example
to compare the results. LHS is an action performed by stand-
ing with feet shoulder-width apart, raising both arms to chest
height with arms parallel to each other and parallel to the
ground, and then swinging both arms back and forth five times
with the same speed. At the fifth swing, the performer bends
the knees and dip down twice. Therefore, a complete cycle
of the LHS action is composed of five sub-movements and
the movement structure can represented by AAAAA′, where
the fifth sub-movement A′ is slightly different from the for-
mer four. The user is asked to perform the query Q, which
only contains a sub-movement A, and then Q is compared
with another long video sequence V involving the LHS action
performed by the experienced student of Meimen.

Fig. 9(a) shows the cross-correlation responses obtained by
using different kinds of skeleton-based descriptors when Q and

Fig. 9. Cross-correlation responses between Q and V obtained by using
different kinds of feature descriptors. (a) Q and V are performed by the
same player with similar execution duration and captured from similar view-
points. (b) Q and V are performed by different people with different execution
duration and captured from slightly different viewpoints.

V are performed by the same player with similar execution
duration and captured from similar viewpoints. Since the cross-
correlation calculates the response of the current tth frame using
the feature signal information in the past N frames (N is the
duration of the query Q), we shift forward the response curve
by N frames to align the response peaks with the starting points
where similar signal patterns occur. The ground truth of a com-
plete movement A or A′ is indicated by the interval between two
successive dash lines, and the black dash lines denotes the end
of the movement A′. In this case, response peaks for all kinds of
descriptors can be clearly detected at the start time of the move-
ment ground truth, which means the performance of different
kinds of descriptors are equally well. However, as shown in
Fig. 9(b), when Q and V are performed by different people with
different execution duration and captured from slightly different
viewpoints (i.e., with anthropometric/temporal/viewpoint trans-
formations), feature descriptors such as SPH and SPH-S will
probably get high responses at the time outside the time periods
in which the movement A or A′ actually occurs. As shown in
Fig. 9, even though the basic SPH and SPH-S descriptors per-
form well with correlation response up to 0.8 when movements
are performed by the same actor, we could not use them as the
representation for action similarity measurement when different
people perform them because the correlation response in the
in-class region is not exactly larger than that in the out-of-class
region. In contrast, descriptors with axes rotation have more
consistent performance. For example, although the maximum
response using R-SPH-S is only around 0.6 in Fig. 9(b), the
response in the in-class region is exactly larger than that in the
out-of-class region, which means the R-SPH-S feature would
be suitable for evaluating movement similarity.

In the case of the LHS action, we observed that applying
joint selection would not affect the shape of the response signal



HU et al.: REAL-TIME HUMAN MOVEMENT RETRIEVAL AND ASSESSMENT WITH KINECT SENSOR 751

but would reflect higher contrast in the amplitude and make
the response signal smoother. That is to say, joint selection
helps us to more easily detect the time positions where the
query movements occur in the video V . This may be caused
by the noisy nature of the sensor and so are the estimated joint
positions. The removed joints are relatively static; therefore,
feature descriptors involving them are more easily affected by
the jittering data. Moreover, among feature descriptors with
joint selection, the performances of R-SPH-S and R-SPH-S+T
are much better than SPH-S.

Another issue is how to determine the degree of static (i.e.,
how to determine wk) for each joint of an action. In this
paper, given a query video, we assign wk a larger value if
the variances of φ′

i and θ ′
i for the joint i are larger. We also

observed that applying R-SPH-S+T would benefit the detec-
tion for action movements with torso rotations, while R-SPH-S
performs better when the query action does not involve much
change in torso rotation. Therefore, variance of the torso direc-
tion, i.e., var(TD), for a query is calculated and we apply
R-SPH-S+T to measure the pose distance if var(TD) is larger
than a predefined threshold; otherwise, R-SPH-S is applied.

In addition to skeleton features, we also consider silhouette
features to represent a human pose. We compare the proposed
features with the descriptors employed in [5] (which only con-
siders skeleton information) and [29] (which only utilized depth
information inside the human silhouette). The retrieval accu-
racies of using skeleton-only [5], silhouette-only [29], and our
skeleton-silhouette descriptors are evaluated based on the col-
lected action database. Each video containing only the assigned
action movement is used to be the query video once, and the
whole collected action database (except the query video) is used
to be retrieved at the same time. Therefore, we have 11 queries
for each action type. Given a query video Qi, the modified DTW
is applied to search the database, and the start/end time points of
the top-20 video segments having the highest similarity scores
are obtained. The average precision (AP) defined by

AP(Qi) =

n∑

k=1
(P(k) · hit(k))

number of hits
(22)

is used to evaluate the retrieval accuracy of the query Qi, where
k is the rank in the retrieved list, and n is number of the returned
candidates. hit(k) is an indicator function which equals 1 if
the intersection duration of the estimated kth segment and the
ground truth segment are longer than or equal to 50% of their
union, and equals zero otherwise. P(k) is the precision at cut-off
k in the list. The retrieval performance for a set of queries is
then evaluated by mean average precision (MAP) defined as

MAP =

H∑

i=1
AP(Qi)

H
(23)

where H is the number of queries. Fig. 10 shows the corre-
sponding MAP of each action category and the average MAP
over all queries regardless of the associated action categories.
Overall, the proposed descriptor that considers both skeleton
and silhouette information performs better than the others.

Fig. 10. MAP of each action category and the average MAP of all queries
obtained by using modified DTW with different kinds of features.

B. Evaluation of Nonlinear Time Warping

As mentioned in Section V-D1, the correlation-based method
highly depends on the length of the query action and therefore
can not find the exact end points of the action occurrences unless
we apply up/down-sampling to the query action and exhaustively
execute the cross-correlation method using queries of different
time lengths. Instead, nonlinear time warping methods are more
effective to measure the difference between two action videos
and are capable of efficiently locating the duration where the
query Q exactly occurs in the video V . In this section, evalu-
ation of different nonlinear time warping methods introduced
in Section V-D are conducted on the collected action database.
The conventional DTW and the entire string matching version
of ASM cannot meet the demand at the retrieval stage of the
proposed action tutor system since they require the boundaries
of the compared videos to be aligned in advance. Therefore,
we only apply the modified DTW and the substring matching
version of ASM to the collected database.

Fig. 11 shows the corresponding MAP of each action category
and the average MAP over all queries regardless of the associated
action categories. We observed that the neither the modified-
DTW NOR the substring matching version of ASM can always
perform better than the other for all kinds of actions. Therefore,
in the proposed Action Tutor system, we let the user to select
the method to retrieve videos. The retrieval performance is also
influenced by the incorrect joint estimation results obtained with
the OpenNI framework, especially when the arms move to the
back and are invisible for a while. In the future we will use
multiple Kinect sensors to overcome this nature limitation of
the single-view vision-based action analysis approach.

C. User Evaluation

We also conducted subjective experiments to evaluate the
overall performance of our action tutor system. Eighteen users
were invited to join the user study, including eleven males
and seven females aged between thirteen to fifty years old.
These participants were requested to complete the entire pro-
cess of our system from the retrieval stage to the learning
stage and then answered a questionnaire as listed in Table II.
The participants are asked to give a satisfaction score ranging
from 1 to 7 for each question, where 7 = strongly agree, 4 =
neutral, and 1 = strongly disagree. The questionnaire aims to
evaluate the proposed system in terms of three aspects, i.e.,
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TABLE II
QUESTIONNAIRE OF THE SUBJECTIVE USER STUDY AND THE CORRESPONDING AVERAGE SCORES

Fig. 11. MAP of each action category and the average MAP of all queries
obtained by using modified DTW or substring matching version of ASM.
The experiments are conducted on queries with/without presegmentation.

effectiveness, efficiency, and acceptance. Both the mean and
variance of the score with respect to each question are reported
in Table II, and the results show that the proposed system is
effective for learning exercise movements and is efficient for
finding target movements. Moreover, most users are willing
to use the proposed system as a long-term tutor because it is
interesting and will not bring embarrassment while learning
movements compared to learning with a human instructor.

VII. CONCLUSION

We propose an action tutor system which achieves high-
level evaluation of human action movements with the aid of
Kinect. The system is operated in two stages: at the retrieval
stage, the user can search the video database for the target
action movements by different action matching methods. A
list of video candidates are returned to the user for choosing
the learning exemplar. At the learning stage, the user follows
the movements in the learning exemplar, and the system eval-
uates the detailed pose difference and the accumulated action
similarity between the user and the exemplar in real-time. We
construct representative pose features based on both skeleton
and silhouette information. Techniques of nonlinear time warp-
ing, i.e., modified DTW and the substring matching version of
ASM, are applied to tackle the issue of temporal transforma-
tions while retrieving target videos, and experiments conducted
on the videos of ten different actions show that the proposed
features and matching methods are effective for movement
retrieval. The subjective test also reveals that the proposed
system is effective, efficient, and acceptable to be used for
learning exercise movements.

Lots of related issues are worthy of further investigation, for
example, improving the joint estimation algorithm to obtain
more robust joint position information, using multiple Kinect
sensors to capture multiview information of the human action
movements, and integrating domain knowledge to give differ-
ent penalty for each joint while calculating the pose difference.
Also, we will experiment our system with a larger collection
of testing videos with more diversity of action movements.
Moreover, we will apply the proposed action tutor system to
medical rehabilitation and game design in the near future.
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