
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

VLSI Architecture Design of Guided Filter
for 30fps Full-HD Video

Chieh-Chi Kao, Jui-Hsin Lai, Member, IEEE, and Shao-Yi Chien, Member, IEEE

Abstract—Filtering is widely used in image and video process-
ing for various applications. Recently, the guided filter had been
proposed and became one of the popular filtering methods. In this
paper, to achieve the computation demand of guided filtering in
Full-HD video, a double integral image architecture for guided
filter ASIC design is proposed. In addition, a reformation of
guided filter formula is proposed which can prevent the error
resulted from truncation in fractional part and modify the
regularization parameter ε on user’s demand. The hardware
architecture of guided image filter is then proposed and can be
embedded in mobile devices to achieve real-time HD applications.
To the best of our knowledge, this work is also the first ASIC
design for guided image filter. With TSMC 90nm cell library,
the design can operate at 100MHz and support for Full-HD
(1920x1080) 30 fps with 92.9K gate counts and 3.2KB on-chip
memory. Moreover, for the hardware efficiency, our architecture
is also the best comparing to other previous works with bilateral
filter.

Index Terms—Guided filter, integral image, double integral
image architecture

I. INTRODUCTION

Filtering is an image processing technique widely adopted
in computer vision, computer graphics, computational pho-
tography and etc. More specifically, filtering can be applied
in many applications like noise reduction, texture editing,
detail smoothing/enhancement, colorization, relighting tone
mapping, haze/rain removal and joint upsampling. The most
popular technique is the edge-preserving bilateral filter [1].
Liu et al. [2] applied bilateral filter to image noise reduction,
Durand et al. [3] used bilateral filter on high dynamic range
(HDR) images. Based on bilateral filter, joint bilateral filter is
developed by Petschnigg et al. [4] in flash/no-flash denoising.
In [5], Kopf et al. used joint bilateral filter for upsampling
problems. For bilateral filter, real-time implementation [6]
usually adopts histogram-based approximation due to its com-
putation efficiency and memory concern. Guided filter has the
non-approximation characteristic and offers an ideal option for
real-time filter applications on HD videos.

Although bilateral filter has a good edge-preserving charac-
teristic, it has been noticed that it may have artifacts in detail
decomposition [7] and HDR compression [3]. Artifacts are
resulted from those pixels which around the edge may have
unstable Gaussian weighted sum. To overcome this problem,

C.-C. Kao, J.-H. Lai, and S.-Y. Chien are with Graduate Institute
of Electronics Engineering and Department of Electrical Engineering,
National Taiwan University, Taipei 106, Taiwan (R.O.C.). e-mail: sy-
chien@cc.ee.ntu.edu.tw.

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

k1

wk1 k2

wk2

i

wi

Image

Fig. 1: The illustration of pixel i and related windows (wi and
wk.)

He et al. [8] proposed guided filter, which can filter output by
considering the content of the guiding image. Compared with
bilateral filter, the guided filter can perform better at the pixels
near edges. Moreover, the guided filter is a non-approximate
linear-time algorithm, which is a very important strength for
real-time applications.

Recently, many applications adopted guided filter as the
filtering method. He et al. [9] used guided filter at the post-
processing step to further improve the alpha mask. Ding et al.
[10] used guided filter to filter out the image saliency under
the guidance of the original image. In [11], because of the
degradation in quality caused by fast approximation bilateral
filter, guided filter was used for fast cost volume filtering. In
[12], in order to suppress color noise while preserving color
structures, guided image filtering was used to smooth the result
of transferred colors. Zhang et al. [13] used guided filter to
refine the crude transmission map. It has high computational
load since it has to filter the transmission map at every frame.
In [14], guided filter was applied to propagate the value from
edge locations into the unknown region by using the blurry
image as the guided image. Hosni et al. [15] applied guided
filter to 3D spatial temporal space for computing temporally
coherent disparity maps. For some applications mentioned
above, a high throughput guided filter is needed. However, it is
not applicable for CPU computation. Although GPU provides
an alternative solution to high throughput guided filter, it has
higher cost and power demand which is not suitable for mobile
devices like digital camera or mobile phone. Therefore, a VLSI
architecture design of guided filter is proposed in this paper.

The remainder of this paper is structured as follows. A
brief review and implementation challenges of guided filter are
described in Section II. Architecture design of guided filter is
described in Section III. The proposed double integral image
architecture is described in Section IV. Next, in Section V
implementation results will be shown and discussed. Finally,
conclusion is given in Section VI.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

(a) Guidance I (b) Guided Filter (c) Crop

(d) Filter Input p (e) Joint Bilateral Filter (f) Crop

Fig. 2: Comparison of guided filter and joint bilateral filter by
flash/no-flash denoising. In the result of joint bilateral filter,
gradient reversal artifacts are noticeable near some edges, as
shown in (f).

II. GUIDED FILTER AND CHALLENGES FOR
IMPLEMENTATION

Here we briefly review the main idea and equations of
guided filter. Given a guidance image I and an input image
p, a filtered output image q can be produced by guided filter.
There is a key assumption of guided filter: The output image
q is a local linear transformation from the guidance image I.
That is, an output pixel qi is a linear transform of guidance
image I in a window wk centered at pixel k:

qi = akIi +bk,∀i ∈ wk (1)

where ak and bk are linear constant coefficients in window
wk. The relation of pixel i and related windows (wi and wk)
is shown in Fig. 1. Since ∇q = a∇I, the output image q has
edge only if the guidance image I has edge. In order to find the
appropriate coefficients, He et al. [8] defined a cost function
in window wk as follows:

E(ak,bk) = ∑
i∈wk

((akIi +bk− pi)
2 + εak

2) (2)

The parameter ε here prevents ak from becoming too large.
The solution of ak and bk for above cost function are as
follows:

ak =

1
|w|∑i∈wk

Ii pi−µk p̄k

σk
2 + ε

(3)

bk = p̄k−akµk. (4)

|w| is the number of pixel in window wk, µk and σk
2 are the

mean and variance of I in window wk, and p̄k is the mean of
input image p in window wk.

After the coefficients are well defined, the next step is to
calculate all the local windows in the whole image. However,
for any pixel i, it may have different output pixel value qi

calculated by different local windows. An average process is
adopted for pixel i, which is defined as follows:

qi =
1
|w| ∑

k:i∈wk

(akIi +bk) = āiIi + b̄i (5)

where āi =
1
|w|∑k∈wi ak and b̄i =

1
|w|∑k∈wi bk.

Although the modification in (5) makes ∇q 6=a∇I, the aver-
age process can make the gradient of q smaller than guidance
I near strong edges. Therefore, most of the abrupt changes in
I are still conserved in this model, which means ∇q≈ā∇I.

The computations of sum of windows and averages in (3),
(4) and (5) can be efficiently accelerated by integral image,
which greatly reduces the computational complexity. Based
on the data in [8], for a gray-scale optimized guided filter,
processing a 1-Megapixel image on PC needs 80ms. However,
it is not fast enough for 30 fps Full-HD (1920x1080) videos.
Therefore, a hardware architecture is proposed to accelerate
the computation of guided filter.

Compared with joint bilateral filter, guided filter has the
edge-preserving smoothing property but does not suffer from
the gradient reversal artifacts near edges, as the example of
flash/no-flash denoising shown in Fig. 2. The result produced
by guided filter in Fig. 2 uses the same parameters and fixed
point calculation as the proposed system. The parameters for
joint bilateral filter are |S| = 31 (window size), σs = 31,
σr = 0.02. Note that the implementation of joint bilateral filter
in Fig. 2 is not accelerated approximation like histogram-
based joint bilateral filter [6] but accurate direct calculation.
Furthermore, compared with N-bins histogram-based joint
bilateral filter [6] from the view of hardware design, the
proposed guided filter architecture has lower cost. The reason
why N-bins histogram-based joint bilateral filter has higher
cost is that it needs N sets of histogram calculation engine
and memory, which greatly increases the implementation cost
in ASIC design. On the contrary, although the proposed
double integral image architecture has two stages for integral
image calculation and larger number of bits in calculation,
the proposed architecture does not need N sets of calculation
engine in each stage. Therefore, the proposed architecture can
achieve lower implementation cost.

The following are the design challenges of the proposed
design. For a Full-HD frame, even adopt the integral image
approach, the memory demand for guided filter is (4+ 2)×
1920×1080×4 = 49,766,400' 49.77MBytes. (Here counts
for integral images of I, I2, p, I p, a and b at single precision.)
It is impractical to use such amount of on-chip memory in
an ASIC design; therefore, memory reduction is an important
issue in our design. Saving all the integral image data in off-
chip memory, the system needs to ask for data while needed,
which brings huge bandwidth. As a consequence, a double
integral image architecture for guided filter is proposed to
solve the problem of trade-off between on-chip memory size
and data bandwidth.

The second challenge is trade-off between design com-
plexity and the number of total gate count. Using IEEE 754
single precision data format makes the system easier to design;

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

1st Stage

8-bit Integral
Image Engine

x2

16-bit Integral
Image Engine

x2

1
0

0
b

it
 x

 1
8

0

O
n

-C
h

ip
 M

em
o

ry

M
em

o
ry

 C
o

n
tr

o
lle

r

IO
Controller

Coefficient
Kernel
Engine
(ak, bk)

aS bS

IS, pS

IQ, pQ

 𝐼𝑖𝑖∈𝑤
𝑘

,
 𝑝𝑖𝑖∈𝑤

𝑘

13-bit Integral
Image Engine

12-bit Integral
Image Engine

5
1

b
it

 x
 1

5
0

O

n
-C

h
ip

 M
em

o
ry

M
em

o
ry

 C
o

n
tr

o
lle

r

bQ

aS

aQ

bS

Output
Kernel
Engine

(qi)

qi

Bus

Off-Chip Memory (DRAM)

2nd Stage 3rd Stage 4th Stage

 𝐼𝑖
2

𝑖∈𝑤
𝑘

,
 𝐼𝑖𝑝𝑖𝑖∈𝑤

𝑘

 𝑎𝑘
𝑘:𝑖∈𝑤

𝑘

 𝑏𝑘
𝑘:𝑖∈𝑤

𝑘

Ii

IO Wrapper

Fig. 3: The proposed architecture of guided filter with double integral image.

however, it takes more bits to store data, which means the
size of on-chip memory increases sharply. Since there are few
average operations (use division) in the whole algorithm, the
fixed point arithmetic should take care of the trade-off between
number of bits in fraction part and the accuracy of the final
answer. A reformation of guided filter formula for hardware
design is proposed, which can avoid the error resulted from
the truncation of fractional part in fixed point calculations.

The last one is boundary handling issue. Tseng et al. [6]
proposed a novel architecture for integral histogram, but the
lower boundary (last few rows) for each frame is neglected.
We extend the architecture proposed by Tseng to solve the
boundary problem.

III. DESIGN OF HARDWARE ARCHITECTURE

Fig. 3 shows the whole proposed architecture design of
guided filter. The design consists of six Integral Image En-
gines, one Coefficient Kernel Engine, and one Output Kernel
Engine. The Integral Image Engine is extended from the
histogram calculation engine proposed in [6]. However, the
novelties of this work are not at the Integral Image Engine,
but the design of Coefficient (ak, bk) and Output (qi) Kernel
Engine, and the double integral image architecture for guided
image filter. For the hardware implementation, the operating
frequency is 100MHz, and the input video format is Full-HD

(1920x1080), 30fps. Since the implementation in the paper
is a prototype of the proposed guided filter architecture, an
IO wrapper is needed between the ASIC design and bus, as
shown in Fig. 3. The specification of the IO wrapper depends
on the parameters of guided filter and the type of bus which
are chosen by the user. The proposed scalable architecture can
be also applied to different specifications of guided filter by
modifying the hardware parameters. If a specific application of
different parameter is needed, the reader can use the proposed
architecture for guided filter to implement customized IP
depending on their requirements.

The whole design adopts the stripe-based method proposed
in [6], which can decompose a frame into several vertical
stripes. Therefore, in the integration and extraction process of
each stripe, as shown in Fig. 4, the required memory reduces
from the width of frame to the width of stripe plus extended
region.

For each cycle, IO controller gives data (IS, IQ, pS and pQ)
of pixel Q and S (as shown in Fig. 4) to the 1st Stage(8-bit
Integral Image Engine x 2, 16-bit Integral Image Engine x 2).
Stage 1 calculates the sums of window (e.g. ∑i∈wk

Ii) of I, p,
I× p and I2, and then passes them to the 2nd Stage (Coefficient
Kernel Engine). After the coefficients are calculated, aS and bS
will be sent to the 3rd Stage (12-bit Integral Image Engine and
13-bit Integral Image Engine). In the meantime, Coefficient

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

S D
D’ S’

O
O’ Q

𝐼𝐼𝑂
𝑆 = 𝐼𝐼𝑂

𝐷 + 𝐼𝐼𝑂′
𝑆′ − 𝐼𝐼𝑂′

𝐷′ − 𝐼𝑄 + 𝐼𝑆

Pixel view

S D
D’ S’

Memory view

(a) Integration Process

O

Pixel view

Memory view

A S

 𝐼𝑖 =

𝑖∈𝑤𝑘

𝐼𝐼𝑂
𝑆 − 𝐼𝐼𝑂

𝐴 𝑤𝑘:

S A

(b) Extraction Process

Fig. 4: Concept of the integral image engine. It consists of
integration and extraction part.

IS

Integral Image Engine

+

IIO’
S’

Reg.

Reg.
IQ − −

− −

+

+ −
+

IIO
A

−

+

IIO’
D’

IIO
S

IIO
D

Σ Ii

IIO
D

8

8

21

21 21 21

Fig. 5: The hardware design of 8-bit Integral Image Engine.
It calculates the integral image of guidance image (I).

Kernel Engine gives aS and bS to IO controller and writes out
to the buffer area at off-chip memory. In this way, when the
3rd Stage needs aQ and bQ for integral image integration, the
buffer at off-chip memory can provide them. Finally, the 4th
Stage (Output Kernel Engine) receives the sums of window of
a and b, and Ii from IO controller, the final output qi can be
calculated.

Detailed descriptions of each hardware design are shown
in the following part. In the figures of each hardware design,
the adders and multipliers are implemented directly in Verilog
without pipeline or parallel processing. However, for the di-
viders, we use the pipelined dividers in Synopsys DesignWare
Library, and the number of stage in each divider is also
annotated in the figures (Fig. 7, 8, 12) of hardware design.

A. Integral Image Engine

Concept of the integral image engine is shown as shown in
Fig. 4. This engine uses pixel values (e.g. IS, IQ) as input
and calculates the sum of window of it (∑i∈wk

Ii). As the
integral histogram architecture proposed by Tseng et al. [6],
the usage of on-chip memory can be effectively reduced by

Coefficient bk Engine

Coefficient ak Engine

bk

ak

Coefficient Kernel Engine

 𝑝𝑖
𝑖∈𝑤

𝑘

 𝐼𝑖
2

𝑖∈𝑤
𝑘

 𝐼𝑖𝑝𝑖
𝑖∈𝑤

𝑘

 𝐼𝑖
𝑖∈𝑤

𝑘

21 21

12

13

29 29

Fig. 6: The hardware design of Coefficient Kernel Engine.

runtime updating method (RUM), stripe-based method (SBM)
and sliding origin method (SOM). We modify the architecture
from the proposed method in [6] to calculate integral image.
By the stripe-based method, the amount of processing data
at each time is reduced to a stripe from a whole frame. Fig.
4a shows the concept of integration process. With RUM and
SOM, the amount of on-chip memory for integral image is
reduced to only a row (the orange row in Fig. 4) from a whole
stripe. In the integration process, it takes three integral images
(II) and two pixel data (I). On the other hand, the extraction
process takes two integral images (II) as input data. As shown
in Fig. 5, the extraction process (calculation of ∑i∈wk

Ii) and the
integration process (calculation of IIO

S) can be implemented
together. By lifetime analysis and buffer registers, all the
needed input data can be reduced to two integral images (IIO′

S′

and IIO
A) and two pixel data (IS, IQ) in each cycle. Fig. 5 shows

the 8-bit Integral Image Engine (IIE) for I in the first stage.
The other 5 IIEs in Fig. 3 share the same architecture with
Fig. 5 but with different number of bits in the datapaths. For
each IIE, there are two IIs to be read from the on-chip memory
and one II to be written to on-chip memory in every operating
cycle. Therefore, 2 memory controllers are used to handle the
data passing between IIEs and on-chip memory. Because the
word number demanded of on-chip memory is low, register
files are used rather than SRAM. Furthermore, since two IIs
are read from the memory at each time, two memory banks
are used for the on-chip memory. For example, in the on-chip
memory of the first stage (100bit×180), 2 two-port register
files (each of 90 words, 100 bit) are used.

B. Coefficient Kernel Engine

In this section, the reformation of guided filter formula for
hardware design is proposed. Using the reformed formula, the
architecture of ak and bk engine avoids the error propagation
in decimal computation brought by truncation in each division
operation. The proposed architecture of Coefficient Kernel
Engine is shown in Fig. 6.

1) Reformation of ak Formula: In this section, a reforma-
tion of guided filter formula is proposed to avoid the error
resulted from truncation of fractional part during the fixed-
point calculations. In (3) and (4), there are three division
operations which lead to the emergence of fractional part in
the calculation. Since we have to use fixed-point arithmetic

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Area
Counter

denominator

numerator

ak

Coefficient ak Engine

1

÷

−

−

+

+

−

−

+

×

×

×

×

 𝑝𝑖
𝑖∈𝑤

𝑘

 𝐼𝑖
2

𝑖∈𝑤
𝑘

 𝐼𝑖𝑝𝑖
𝑖∈𝑤

𝑘

 𝐼𝑖
𝑖∈𝑤

𝑘

10

13

21

21

29

29 52

40

10-stage
pipelined
divider

Fig. 7: The hardware design of ak Kernel.

to reduce the gate counts in the ASIC design, the number
of bits in fractional part in every calculation greatly affects
the accuracy of the final output. Therefore, (3) and (4) are
reformed for hardware architecture, which makes the inter-
mediate calculation operates in integer domain without any
precision loss during truncation process. The reformation of
ak is as follows:

ak =

1
|w|∑i∈wk

Ii pi−µk p̄k

σk
2 + ε

=

1
|w|∑i∈wk

Ii pi−µk p̄k

(
1
|w|∑i∈wk

Ii
2−µk

2)+ ε

=
|w|∑i∈wk

Ii pi−|w|2µk p̄k

|w|∑i∈wk
Ii

2−|w|2µk
2 + |w|2ε

=
|w|∑i∈wk

Ii pi−∑i∈wk
Ii∑i∈wk

pi

|w|∑i∈wk
Ii

2− (∑i∈wk
Ii)2 + |w|2ε

(6)

where ∑i∈wk
Ii pi, ∑i∈wk

Ii
2, ∑i∈wk

Ii and ∑i∈wk
pi are sums of

I × p, I × I, I, p in window wk. In this reformation, all
the multiplications, additions and subtractions are computed
in integer domain, which means no truncation loss. The
only fraction part resulted from the final division, and the
choice of number of bits in fraction part will be discussed
in Section III-B3. Compared with the brute force calculation
of original formula (3), the times of division is reduced from
4 to 1. Three divisions in average operations are replaced
by two multiplications, which effectively reduces the circuit
complexity and calculation error.

As ak shown above, bk can be also calculated in integer
domain for truncation error prevention. The reformed formula
is as follows:

bk =p̄k−akµk

=
∑i∈wk

pi−ak∑i∈wk
Ii

|w|
(7)

ak

Area
Counter

denominator

numerator
bk

Coefficient bk Engine

÷ − × −

+

 𝑝𝑖
𝑖∈𝑤

𝑘

 𝐼𝑖
𝑖∈𝑤

𝑘

21

21

13

11

28 12

4-stage
pipelined
divider

Fig. 8: The hardware design of bk Kernel.

Avg. Error = 0.1523

Max. Error = 0.3424

0

2

4

6

8

10

12

14

16

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
a

x
im

u
m

 E
rr

o
r

A
v
e

ra
g

e
 e

rr
o

r

Fraction bit of ak

Error of final output qi

Average error

Maximum error

Fig. 9: The effect in average output error and maximum output
error by number of bits in fraction part of ak, given 1-bit for
sign bit and 4-bit for integer part. The red line indicates the
final choice in our design, 8-bit of fraction part in a.

where the ∑i∈wk
pi and ∑i∈wk

Ii are sums of p and I in window
wk. Compared with the brute force calculation of original
formula (4), the times of division is reduced from 2 to 1.

2) Architecture of ak and bk Kernel: The proposed archi-
tecture for coefficient ak is shown in Fig. 7. In the reformed
formula (6), there are two multiplications needing the area
(|w|) of window (wk) as input. For handling the boundary
conditions, an area counter is needed for different windows,
since the window area changes at stripe boundary.

In the calculation of denominator, 1 is added as the regu-
larization parameter ε (i.e. set |w|2ε = 1). Since the formula is
reformed to integer domain for hardware design, the 1 added
here is actually equal to a very small ε in the original formula
(3). (That is 1/|w|2, which equals 1/9612 ' 10−6 at most
windows in our design.) The added number can be modified
to add any value depends on the user’s demand (at precision
1/|w|2). The proposed ak kernel is a flexible design which can
be adapted different applications.

The proposed architecture for coefficient bk is shown in
Fig. 8. Because in the reformed formula of bk still needs |w|
as denominator, there is an area counter in the bk Kernel.
Moreover, the number of bits for the area is extended to 11
due to 1-bit sign extension.

3) Word Length Analysis: In this part, we analyze the effect
in precision resulted from the number of bits in ak and bk.
First, note that in (5), bk is directly used after an average
process. After the average process, the number of bits of

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

fraction part in bk has little impact on the final output answer.
We have tried to change the number of bits of fraction part in
bk from 1 to 10 bits, but the maximum error and average error
of output qi remain the same. As a result, we fix the number
of bits in fraction part for bk to 1 in our implementation. On
the contrary, ak is multiplied by Ii after an average process
in (5), and also multiplied by the summation of a window
in I in (7), which makes the bit number of fractional part
greatly influence the final precision. The plot of average and
maximum output error versus the number of bits in fraction
part in ak are shown in Fig. 9. The final choice of number of
bits in fraction part for ak is 8-bit, since the precision cannot
be further greatly improved by increasing number of bits in
fraction part. As shown in Fig. 9, the chosen point has average
error at 0.1523 and maximum error at 0.3424.

A further analysis of the effect on the output error (qi) with
respect to window size and the number of bits in fraction part
of ak is shown in Fig. 10. When window size is small, both
average and maximum error trend down with window size.
Moreover, there are sharp edges both in average and maximum
error at window size between 3 to 7. The error is resulted from
the fixed number of bits in integer part of ak. Because there
are only 4-bit in the integer part, the limitation of maximum
and minimum value of ak are 16 and -16. In Fig. 11a, the
true maximum and minimum value of ak are far beyond the
limits at window size equals 3. In the first row of (6), because
smaller window size results in smaller window area (|w|); the
smaller the window size, the larger the ak. As shown in Fig.
11a, the needed number of bits in integer part of ak decreases
with window size.

Another fact may be noticed from Fig. 10a is the average
error of output qi increases with window size. Because the
increase of average error is inconspicuous in Fig. 10a, a closer
view is shown in Fig. 11b. In (7), coefficient ak is multiplied
by a summation of a window in I. The larger the window size,
the larger the summation of I. Therefore, for larger value of
the summation, truncation error in ak brings about larger error
in bk and final output qi. All in all, there are two aspects which
can result in error at the output: the overflow and truncation
problem in ak. For smaller window size, the overflow problem
dominates the output error. In Fig. 11a, as ak does not overflow
for window size larger than 11, the error is dominated by
the truncation error. As shown in Fig. 11b, the average error
increases with window size due to the truncation error in ak.
For different window sizes, the selection of number of bits
in integer and fraction part in ak plays an important role in
the proposed architecture. The user should choose the suitable
number of bits in ak depending on the specification of desired
design.

C. Output Kernel Engine

In this section, architecture for output qi is proposed. For
the hardware design, the formula in (5) is reformed to integer
domain as in Section III-B. The formula is reformed as

0

10

20

30

40

0

5

10

15

20

0

1

2

3

4

Window size

Average error of final output q
i

Fraction bit of a
k

X: 31

Y: 8

Z: 0.1523

(a) Average Output Error

0

10

20

30

40

0

5

10

15

20

0

50

100

150

200

250

Window size

Maximum error of final output q
i

Fraction bit of a
k

X: 31

Y: 8

Z: 0.3424

(b) Maximum Output Error

Fig. 10: The effect in average and maximum output error of
window size and number of bits in fraction part of ak, given
1-bit for sign bit and 4-bit for integer part. The black point
with annotation in (a) and (b) indicates the final choice in our
design.

follows:
qi =āiIi + b̄i

=
Ii ∑k:i∈wk

ak +∑k:i∈wk
bk

|w|
(8)

where ∑k:i∈wk
ak and ∑k:i∈wk

bk are sums of window of co-
efficients ak and bk. The design is shown in Fig. 12. The
architecture is similar with bk Kernel, however, we did not
fold these two architectures together because each of these two
Kernels already has high utilization rate. More details about
utilization rates will be discussed in Section IV-C.

IV. DOUBLE INTEGRAL IMAGE ARCHITECTURE

As mentioned in Section II, although guided filter can
be implemented by integral image method, it is impossible

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

-60

-50

-40

-30

-20

-10

0

0

10

20

30

40

50

60

3 7 11 15 19 23 27 31

M
in

im
u

m
 v

a
lu

e

M
a

x
im

u
m

 v
a

lu
e

Window Size

Maximum and minimum of coefficient ak

Calculated max.

True max.

Calculated min.

True min.

(a) Maximum and Minimum Curve of ak

0.13

0.14

0.15

0.16

11 15 19 23 27 31

Window Size

Average error of outpu qi

(b) Average Output Error

Fig. 11: (a) The true and calculated maximum and minimum
value of ak with respect to window size. Because the number
of bits in integer part of ak is set to 4-bit, the maximum and
minimum value of calculated ak are saturated at 16 and -16
for window size smaller than 11. (b) Average output error with
respect to window size. (Number of bits in integer and fraction
part of ak are fixed at 4 and 8.)

Ii

Area
Counter

denominator

numerator

qi

Coefficient qi Engine

÷ − × +

−

 𝑎𝑘
𝑘:𝑖∈𝑤

𝑘

 𝑏𝑘
𝑘:𝑖∈𝑤

𝑘

8

8

25

26

11

28

4-stage
pipelined
divider

Fig. 12: The hardware design of qi Kernel.

to store the intermediate coefficients ak and bk in on-chip
memory due to its large memory demand. Therefore, a double
integral image architecture is proposed, which is based on the
integral histogram architecture proposed by Tseng et al. [6].
The data flow of double integral image architecture can be
separated into two parts. In the following, the whole dataflow
will be introduced.

A. Dataflow of Double Integral Image Architecture

The first part is illustrated in Fig. 13. The first and second
stages here are referred to the same stages in Fig. 3. The
input data is only a stripe rather than a full frame due to the
stripe-based method. Given stripe width ws, window size |S|
(|w| = |S|2), frame height H f , the size of each input stripe
is (ws + 2(|S| − 1))×H f . Choosing the number of pixel in

a window (|w|) to be a power of 2 can remove the need of
dividers in the following calculations. However, since it cannot
produce a symmetric ((2k+1)−by−(2k+1),k ∈N) window,
this option is not taken into consideration. Output sums of
window at the first stage represent the summations of input
image (both guidance image and original image) in a specific
window. In Fig. 13, the blue area in the first stage means it
outputs the sums of window of corresponding window whose
center is in the blue area at the input stripe. Take the sum of
window of I as an example, the output at location (x1,y1) in
the first stage is defined as:

SWI(x1,y1) = ∑
i∈w(x0 ,y0)

Ii, (9)

where x0 = x1−(
|S|−1

2
), y0 = y1−(

|S|−1
2

), x1≥ |S|−1, y1≥

(
|S|−1

2
), and w(x0,y0) is the window centered at (x0,y0) with

window size |S| in the input stripe. The relationship between
input image and the first stage can be explained by an easy
example. As shown in Fig. 15, the sum of window centered at
pixel 11 (red cross), can be derived at pixel 22 (red point) in
the next stage. In the same way, as shown in Fig. 13, the red
and orange crosses at the first stage are the summations of the
red and orange squares in the input stripe. In our architecture,
each stage outputs the data of one point in a cycle, which
means the whole system is well pipelined. Outputs at the first
stage can be used to calculate the coefficients at the second
stage, and the correspondence between the first and second
stages is x1 = x2, y1 = y2.

In order to reduce the on-chip memory for the storage of a
and b, at the second stage, the outputs a and b are written to
a small buffer at the off-chip memory. The required off-chip
memory size is |S|× (ws +(|S|−1))× (wa +wb), where wa is
the bit number of a and wb is the bit number of b. Moreover,
the oldest data in the buffer will be sent to the third stage for
the integral image calculation and then overwritten by the new
a and b produced by the second stage.

The second part of the dataflow is illustrated in Fig. 14. In
the second stage, the available data is the blue area. However,
we are going to calculate the sums of window of a and b,
which means that the valid positions of window center shrink
to the green area from blue area. In the third stage, the sums of
window of a and b are calculated, which follows the equation
below (take a for example):

SWa(x3,y3) = ∑
k∈w(x2 ,y2)

ak, (10)

where x2 = x3− (
|S|−1

2
), y2 = y3− (

|S|−1
2

), x3 ≥ 2(|S|−1),
y3 ≥ |S|−1, and w(x2,y2) is the window centered at (x2,y2)
with window size |S| in the second stage. As shown in Fig.
14, the brown cross at the third stage is the summation of
the brown square in the input second stage. Given the sums
of window of a and b, the output q can be calculated at the
fourth stage. Now we are going to map the location of output
q at the fourth stage to the location of input stripe. It can be

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

Input Stripe

1st Stage
Sums of Window of I, p, II, Ip

2nd Stage
ak, bk

𝐻𝑓

(𝑤𝑠 + 4𝛼)

𝛼

2𝛼 (𝑤𝑠 + 2𝛼)

(𝐻𝑓 + 𝛼)

(𝑤𝑠 + 4𝛼)

𝛼

2𝛼 (𝑤𝑠+2𝛼)

𝐻𝑓 (𝐻𝑓 + 𝛼)

(𝑤𝑠 + 4 𝛼)

𝐻𝑓

𝐿𝑒𝑡 𝛼 = (
𝑆 − 1

2
)

𝛼 𝛼

Fig. 13: The first part of dataflow of the proposed double integral image architecture.

3rd Stage

Sums of Window of a, b

2nd Stage
ak, bk

4th Stage
qi

Corresponded
to Input Stripe

𝐿𝑒𝑡 𝛼 = (
𝑆 − 1

2
)

𝛼

2𝛼
4𝛼 𝑤𝑠

2𝛼

𝐻𝑓 𝐻𝑓 𝐻𝑓 𝐻𝑓

𝑤𝑠 + 4 𝛼
𝑤𝑠 + 4 𝛼 𝑤𝑠 + 4 𝛼 𝑤𝑠 + 4 𝛼

𝐻𝑓 + 2𝛼 𝐻𝑓 + 𝛼 𝐻𝑓 + 2𝛼

4𝛼 𝑤𝑠 𝑤𝑠 + 2 𝛼 2𝛼 2𝛼 𝑤𝑠

2𝛼

Fig. 14: The second part of dataflow of the proposed double integral image architecture. The right most part shows the
relationship of output qi and corresponded pixel location in the input stripe.

derived as follows:

(x0,y0) =(x1− (
|S|−1

2
),y1− (

|S|−1
2

))

=(x2− (
|S|−1

2
),y2− (

|S|−1
2

))

=(x3− (
|S|−1

2
)− (
|S|−1

2
),y3− (

|S|−1
2

)− (
|S|−1

2
))

=(x4− (|S|−1),y4− (|S|−1)),
(11)

where ws + 2(|S|−1) > x4 ≥ 2(|S| − 1), H f + |S| − 1 > y4 ≥
|S|−1 or ws + |S|−1 > x0 ≥ |S|−1 , H f > y0 ≥ 0. This
correspondence is also illustrated in the right most part of
Fig. 14.

Table I shows the comparison of used resource between
the proposed double integral image architecture and the other
implementation methods. The direct method only calculates
the coefficient and store all the integral images at off-chip
memory, which results in high bandwidth and off-chip mem-
ory demand. The single integral image architecture uses the

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

Fig. 15: The illustration of sum of window process.

TABLE I: RESOURCE USED BY DIFFERENT ARCHITEC-
TURE OF GUIDED FILTER PER FRAME

Direct Method Single Integral Proposed Double
Image Integral Image

Off-chip 51.58MB 6.48MB 14.53KBMemory
Bandwidth 2.13Gb 327.11Mb 262.31Mb

method similar to [6], and stores all intermediate coefficients
(a, b) at the off-chip memory. Compared with single inte-
gral image architecture, the proposed double integral image
architecture can update intermediate coefficients at the off-
chip memory and uses the coefficients directly once they are
calculated, which reduces 99.776% of off-chip memory and
19.8% of bandwidth. Compared with the direct method, the
proposed architecture reduces 99.972% of off-chip memory
and 87.683% of bandwidth.

B. Boundary Handling

In hardware design, boundary handling is always an an-
noying but critical issue. Here an extended null stripe method
(ENS) is proposed. At every integral image step, an extended

null stripe with height
|S|−1

2
is added at the end of the stripe.

Every data point in the null stripe is set to 0. If there is no
extended null stripe added at input stripe and Stage 2, the
integral images at the next stages (Stage 1 and Stage 3) would

be lack of the answer of last
|S|−1

2
rows. Take Stage 1 for

example, the function of extended null stripe can be explained
by the relation of (x0,y0) and (x1,y1). The integral image
centered at (x0,y0) generates at (x1,y1) in Stage 1. Because

y1 = y0 +
|S|−1

2
, if there is no extended null stripe added at

input stripe, the calculation stops at the last row of input stripe
(y0 = H f), which means the integral images in Stage 1 are

only produced to row H f −
|S|−1

2
. An example of numerical

expression is as follows: Given the height of the stripe (H f)
and the size of window (|S|) are 1080 and 31, if there is no
extended null stripe added at input stripe, the integral images
we can get in Stage 1 would become those centered only from
row 0 to row 1064 (1079-(31-1)/2 = 1064) rather than 0 to
1079. The yellow stripes at the input stripe in Fig. 13 and the
second stage in Fig. 14 are all extended null stripes.

C. Hardware Performance and Parameter Setting

In the section, hardware performance and parameter setting
of the proposed architecture are discussed. The hardware uti-
lization rate in each stage is shown in Table II. The utilization

TABLE II: HARDWARE UTILIZATION RATE IN EACH
STAGE

Stage 1 Stage 2 Stage 3 Stage 4 Average
97.56% 80.19% 81.30% 64.15% 80.80%

TABLE III: SPECIFICATION OF THE PROPOSED GUIDED
FILTER CHIP

Technology TSMC 90nm CMOS Mixed Mode Signal
MS General Purpose LowK Cu 1P9M

Frame Size 1920×1080
Frame Rate 30
Filter Window Size 31×31
Stripe Width 120
Operating Frequency 100MHz
Chip Size 1.46×1.43 mm2

Core Size 0.92×0.89 mm2

Power Consumption 22.522 mW
Gate Counts 92,895
On-Chip Memory (Byte) 3,206

rate can be regarded as the ratio of area of color region to
the whole area at each stage in Fig. 13 and Fig. 14. The
average utilization rate is 80.80%. Although the architecture
of bk Kernel and the Output Kernel are quite similar, their
utilization rates are 80.19% and 64.15%, which means there is
no room for folding architecture. However, in case of working
with different clock frequencies on the different stages, folding
techniques could be applied by adding buffer registers.

The stripe width ws is an important parameter because
it affects computation cycle, on-chip memory and off-chip
bandwidth. Increasing ws can reduce computation cycle and
off-chip bandwidth; however, the on-chip memory increases,
which means the hardware cost increases. For parameter
setting, the detailed discussion of computation cycle, on-
chip memory and off-chip bandwidth of the proposed double
integral image architecture are shown as follows. As shown in
Fig. 13 and Fig. 14, the needed computation cycle for each
stripe is:

(ws +2(|S|−1))× (H f + |S|−1). (12)

For a whole frame, the total number of computation cycle
becomes:

dWf /wse× (ws +2(|S|−1))× (H f + |S|−1), (13)

where Wf and H f are the width and height of frame. Note
that, there are 2 bubble cycles for resetting the registers in the
integral image engines in each row during the computation.
The plot of computation cycle per frame versus stripe width
is shown in Fig. 16a.

Second, the needed bandwidth is as follows:

{[(ws +2(|S|−1))×H f ×32]+ [ws×H f ×16]+
[(ws + |S|−1)×H f ×2× (wa +wb)]}×dWf /wse,

(14)

where wa = 16 and wb = 9 are the numbers of bits in coeffi-
cients a and b, [(ws+2(|S|−1))×H f ×32] is the bandwidth of
input pixel data (IS, IQ, pS, pQ) at the first stage, [ws×H f ×16]
is the bandwidth of the fourth stage including input data Ii and
output answer qi, [(ws + |S|− 1)×H f × 2× (wa +wb)] is the

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

(Mcycle)

2

3

4

5

6

7

32 64 96 128 160 192 224
Stripe Width

3.232Mcycle per

frame for ws=120

(a) Computation Cycle per Frame

(Mb)

262.31Mb for ws=120

200

260

320

380

440

500

32 64 96 128 160 192 224

Stripe Width

(b) Off-chip Bandwidth

(Byte)

3206 Bytes for ws=120

1500

2300

3100

3900

4700

5500

32 64 96 128 160 192 224

Stripe Width

(c) On-chip Memory

Fig. 16: Hardware performance with different values of stripe width.

bandwidth of output aS, bS at the second stage and input aQ,
bQ at the third stage. The plot of off-chip bandwidth versus
stripe width is shown as Fig. 16b.

Last, the required on-chip memory is as follows:

[(ws +2(|S|−1))]× [2× (8+wm1)+2× (16+wm1)]

+[(ws + |S|−1)]× [(wa +wm3)+(wb +wm3)],
(15)

where wm1 is equal to dlog2[|S|(ws +2(|S|−1))]e and wm3 is
equal to dlog2[|S|(ws + |S|−1)]e. In our design, both wm1 and
wm3 are equal to 13. As shown in Fig. 16c, the size of on-chip
memory increases linearly with the stripe size ws.

With the constraint of operation frequency (100MHz), take
the above three aspects into consideration, ws is set to 120
in our implementation and the needed computation cycle for
one stripe becomes 202,020. For the whole frame, it takes
3,232,320 cycles for computation, as shown in Fig. 16a.
For 30 frames of Full-HD video, it takes 96,969,600 cycles
for computation. The processing time for 30 frames equals
the total number of computation cycle (96,969,600 cycles)
multiplied by unit computation cycle time (10ns), which means
that it takes 0.969696 sec for calculation and meets our
specification of operation frequency.

V. IMPLEMENTATION RESULT

In this section, our implementation result is presented and
compared with other previous works. Our specification is oper-
ating at 100MHz frequency and 30fps Full-HD (1920x1080).
The proposed guided filter architecture is implemented with
TSMC 90 nm 1P9M technology. The implementation result
and chip layout are shown in Table III and Fig. 17. The
hardware design spends 92.9K equivalent NAND gates and
3.2KB on-chip memory to achieve the throughput of 30fps
Full-HD 1080p at clock rate 100MHz. The power consumption
is the post-layout simulation result by Synopsys IC Compiler.

There are few implementations for guided filter, and the
comparison is in Table IV. Compared with previous GPU
and CPU implementations, the proposed architecture offers
an efficient solution of relatively low hardware cost with high
throughput. Although GPU has higher throughput, it needs
high power supply. The proposed architecture can achieve
higher throughput by adding more processing elements since
each stripe can be processed in parallel. For the same through-
put, hardware cost and power consumption of the proposed

ASIC design are much lower than GPU. Moreover, the pro-
posed design can be embedded into devices like digital camera
which has no GPU on it. Another convenient platform for real-
time filter implementation is DSP platform. Although we did
not implement the guided filter algorithm on DSP platform,
we found previous works to justify the value of guided filter
ASIC design. Gangwal et al. [17] implemented joint-bilateral
filters on TriMedia TM3270. According to [17], it is the first
reporting of a real-time implementation of joint-bilateral filters
on an embedded DSP. Operating at 350MHz, it can achieve
maximum throughput at 20.7 MPixel/sec (720x576@50Hz).
However, according to [18], the estimated power consumption
for the design in [17] at 350MHz is 281.44mW (350(MHz)
x 0.935(mW/MHz) x 86%(cycle budget)) and the chip area is
8.08 mm2. Moreover, the realization of the TM3270 is in a low
power CMOS process technology, with a 90 nm feature size,
so it is fair to compare the power consumption and area with
the example design of the proposed architecture, which is also
implemented with 90 nm technology. Compared with the work
in [17], the proposed design can achieve 2.99X throughput
with reducing 92.0% of power consumption and 74.2% of
chip area. Although it may not be totally fair to compare the
implementations of different filter on different platforms, the
above mentioned comparison still provides a supporting reason
for the necessity of ASIC filter design in hand-held devices
where the power consumption is the major concern.

The proposed architecture for guided filter is also compared
with previous ASIC implementations for other edge preserving
filters, as shown in Table V. Although the presented compari-
son in Table V consists of different kinds of algorithm, all the
goals of these filters are the same, which is filtering in image
processing. Compared with of other state-of-the-art ASIC filter
designs, the proposed guided filter architecture greatly reduces
the usage not only in equivalent gate counts but also in on-
chip memory. For the same specification, compared with the
joint bilateral filter design in [6], the proposed architecture
uses 35.1% of gate counts and 13.9% of on-chip memory to
achieve the better performance since guided filter can avoid the
gradient reversal artifacts that bilateral filter may have in detail
enhancement. As shown in Fig. 18, the designed architecture
is validated by comparing the filtered result with the result
generated by software in double precision.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

TABLE IV: COMPARISON OF DIFFERENT GUIDED FILTER IMPLEMENTATIONS

He [8] Rhemann [11] Proposed

Implementation CPU Core2Duo GPU GeForce ASIC2.0GHz GTX480
Image Size (Pixel) 1.0M 1.0M 2.07M

Image Type Gray-scale RGB RGB Gray-scale
Throughput (Pixel/sec) 12.5M 3.33M 200M 62M

TABLE V: COMPARISON WITH OTHER ASIC FILTER IMPLEMENTATIONS

Han [16] Tseng [6] Proposed
Filter Type Bilateral Filter Joint Bilateral Filter Guided Filter
Technology TSMC 0.18um UMC 90nm TSMC 90nm
Frame Size 320x240 1920x1080 1920x1080
Frame Rate 144 30 30
Filter Window Size 11x11 31x31 31x31
Operating Frequency 60 MHz 100 MHz 100 MHz
Throughput (Pixel/s) 11M 62M 62 M
Gate Counts 355K 276.2K 92.9K
On-Chip Memory (B) 7.8K 23K 3.2K

1st Stage

2nd Stage

3rd Stage
4th Stage

C
trl

Fig. 17: Chip layout.

VI. CONCLUSION

This paper has proposed an VLSI architecture design for
guided filter. To the best of our knowledge, this work is also
the first work to implement guided filter in hardware. With
the proposed architecture, an example design has throughput
of 30fps Full-HD (1920x1080) with 92.9K NAND gates and
3.2KB on-chip memory is implemented. Compared with other
previous filter ASIC designs, the proposed guided filter design
using TSMC 90nm technology reduces not only gate counts
but also on-chip memory, and still has high throughput.
Moreover, recent literature showed that guided filter performs
well in many applications, which means the guided filter may
perform better than other filters. In other words, using guided
filter can save hardware cost without the loss in quality. In
this paper, the coefficients are only calculated for gray-scale
guidance image (I). By modifying the coefficient kernel in the

(a) Guidance I (b) Filter Input p

(c) Filtered Result of Software in
Double Precision

(d) Filtered Result of the Proposed
Architecture

Fig. 18: Comparison of the filtered result of the proposed
architecture and the filtered result of software in double
precision by flash/no-flash denoising.

second stage, the proposed architecture can be able to handle
color image. Apply the proposed architecture to RGB guided
filter is the primary future work of this paper.

REFERENCES

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE 6th Int. Conf. Computer Vision (ICCV), Bombay,
India, 1998, pp. 839–846.

[2] C. Liu, W. Freeman, R. Szeliski, and S. B. Kang, “Noise estimation
from a single image,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 1, New York, NY, 2006, pp. 901–908.

[3] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” ACM Trans. Graph., vol. 21, no. 3, pp. 257–266,
Jul. 2002.

[4] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image pairs,”
ACM Trans. Graph., vol. 23, no. 3, pp. 664–672, Aug. 2004.

[5] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral
upsampling,” ACM Trans. Graph., vol. 26, no. 3, article 96, Jul. 2007.

[6] Y.-C. Tseng, P.-H. Hsu, and T.-S. Chang, “A 124 Mpixels/s VLSI
design for histogram-based joint bilateral filtering,” IEEE Trans. Image
Process., vol. 20, no. 11, pp. 3231–3241, Nov. 2011.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

[7] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Trans. Graph., vol. 27, no. 3, pp. 67:1–67:10, Aug. 2008.

[8] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Proc. 11th
European Conf. Computer vision (ECCV): Part I, Crete, Greece, 2010,
pp. 1–14.

[9] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun, “A global sampling
method for alpha matting,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), Colorado Springs, CO, 2011, pp. 2049–
2056.

[10] Y. Ding, J. Xiao, and J. Yu, “Importance filtering for image retargeting,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
Colorado Springs, CO, 2011, pp. 89–96.

[11] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Colorado
Springs, CO, 2011, pp. 3017–3024.

[12] A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho, P. Tan,
and S. Lin, “Semantic colorization with internet images,” ACM Trans.
Graph., vol. 30, no. 6, pp. 156:1–156:8, Dec. 2011.

[13] J. Zhang, L. Li, Y. Zhang, G. Yang, X. Cao, and J. Sun, “Video dehazing
with spatial and temporal coherence,” Vis. Comput., vol. 27, pp. 749–
757, Jun. 2011.

[14] Y. Cao, S. Fang, and F. Wang, “Single image multi-focusing based on
local blur estimation,” in Proc. Sixth Int. Conf. Image and Graphics
(ICIG), Hefei, China, 2011, pp. 168–175.

[15] A. Hosni, C. Rhemann, M. Bleyer, and M. Gelautz, “Temporally consis-
tent disparity and optical flow via efficient spatio-temporal filtering,” in
Advances in Image and Video Technology, LNCS, vol. 7087, Y.-S. Ho,
Ed. Berlin: Springer, 2012, pp. 165–177.

[16] S.-K. Han, “An architecture for high-throughput and improved-quality
stereo vision processor,” Master’s Thesis, Dept. Electrical Engineering,
Univ. of Maryland, College Park, MD, 2010.

[17] O. Gangwal, E. Coezijn, and R.-P. Berretty, “Real-time implementation
of depth map post-processing for 3D-TV on a programmable DSP
(TriMedia),” in Dig. Tech. Papers Int. Conf. Consumer Electronics
(ICCE), Las Vegas, NV, 2009, pp. 1–2.

[18] J.-W. van de Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen, B. Zhong,
C. Basto, J.-P. van Itegem, D. Amirtharaj, K. Kalra, P. Rodriguez, and
H. van Antwerpen, “The TM3270 media-processor,” in Proc. 38th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO-38), Barcelona, Spain,
2005, pp. 331–342.

Chieh-Chi Kao received the B.S. degree in electri-
cal engineering and the M.S. degree in the Graduate
Institute of Electronics Engineering from National
Taiwan University (NTU), Taipei, Taiwan, in 2010
and 2012, respectively. His research interests are in
image & video processing, computational photogra-
phy, computer vision, and related VLSI architecture.

Jui-Hsin Lai received the B.S. degree in electronics
engineering from the National Chiao-Tung Univer-
sity (NCTU), Hsinchu, Taiwan, in 2005. In 2011,
he received the Ph.D. degree from the Graduate
Institute of Electronics Engineering at National Tai-
wan Uni- versity (NTU), Taipei, Taiwan. During
2007 to 2011, he was a project leader in Yotta-
Labs, an IC design house in Taipei, for designing the
algorithm and hardware architecture of vision-based
object tracking, face detection, and recognition. S-
ince 2011, he was been a post-doctoral fellow in the

Graduate Institute of Networking and Multimedia, NTU. His research interests
include the applications of interactive multimedia, computer vision, sports
video, video/image processing, and VLSI architecture design of multimedia
processing.

Shao-Yi Chien (S’99–M’04) received the B.S. and
Ph.D. degrees from the Department of Electrical
Engineering, National Taiwan University (NTU),
Taipei, Taiwan, in 1999 and 2003, respectively. Dur-
ing 2003 to 2004, he was a research staff in Quanta
Research Institute, Tao Yuan County, Taiwan. In
2004, he joined the Graduate Institute of Electronics
Engineering and Department of Electrical Engineer-
ing, National Taiwan University, as an Assistant
Professor. Since 2012, he has been a Professor.
His research interests include video segmentation

algorithm, intelligent video coding technology, perceptual coding technology,
image processing for digital still cameras and display devices, computer graph-
ics, and the associated VLSI and processor architectures. He has published
more than 200 papers in these areas.

Dr. Chien serves as an Associate Editor for IEEE Transactions on Cir-
cuits and Systems for Video Technology, IEEE Transactions on Circuits
and Systems I: Regular Papers, and Springer Circuits, Systems and Signal
Processing (CSSP). He also served as a Guest Editor for Springer Journal of
Signal Processing Systems in 2008. He also serves on the technical program
committees of several conferences, such as ISCAS, ICME, SiPS, A-SSCC,
and VLSI-DAT.

