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Abstract

Cropland segmentation of satellite images is an essential ba-
sis for crop area and yield estimation tasks in the remote
sensing and computer vision interdisciplinary community. In-
stead of common pixel-level segmentation results with salt-
and-pepper effects, a parcel-level output conforming to hu-
man recognition is required according to the clients’ needs
during the model deployment. However, leveraging CNN-
based models requires fine-grained parcel-level labels, which
is an unacceptable annotation burden. To cure these practi-
cal pain points, in this paper, we present PARCS, a holistic
deployment-oriented Al system for PARcel-level Cropland
Segmentation. By consolidating multi-disciplinary knowl-
edge, PARCS has two algorithm branches. The first branch
performs pixel-level crop segmentation by learning from lim-
ited labeled pixel samples with an active learning strategy to
avoid parcel-level annotation costs. The second branch aims
at generating the parcel regions without a learning procedure.
The final parcel-level segmentation result is achieved by inte-
grating the outputs of these two branches in tandem. The ro-
bust effectiveness of PARCS is demonstrated by its outstand-
ing performance on public and in-house datasets (an over-
all accuracy of 85.3% and an mloU of 61.7% on the pub-
lic PASTIS dataset, and an mIoU of 65.16% on the in-house
dataset) . We also include subjective feedback from clients
and discuss the lessons learned from deployment.

1 Introduction

Cropland segmentation is an integral part of utilizing crop-
land satellite image data to efficiently achieve crop types and
areas without cumbersome on-site measurement. Compared
to pixel-level cropland segmentation, a more favorable seg-
mentation output format is parcel-level, partitioning crop-
land into individual reasonable pieces. Numerous previous
studies focused on this segmentation task in a supervised
manner (M Rustowicz et al. 2019; Garcia-Pedrero et al.
2019; Sun, Di, and Fang 2019; Garnot and Landrieu 2021;
Martinez et al. 2021). However, the cost of parcel-level an-
notation for training cannot be ignored. Many other research
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studies explored unsupervised approaches (Yang et al. 2021;
Cheng et al. 2020), but along with the research work us-
ing supervised learning, their work used limited study sites
to demonstrate the effectiveness of the proposed methods.
Therefore, insufficient generalization capacity is still a chal-
lenge for confidently carrying out their solutions in practice.

One of the barriers to an Al system’s effective deployment
is the gap in domain knowledge among different disciplines.
To confront this challenge, we aim to propose a deployment-
oriented Al system to bridge this gap. As the clients provide
a large area of interest (Aol) for cropland segmentation pre-
diction, they also need to annotate some sample regions of
this Aol for our model training. In this process, the clients
mainly suffer from two pain points. First, the parcel-level
annotation cost is not acceptable in terms of time and labor.
Second, instead of a pixel-level segmentation output with se-
vere salt-and-pepper effects, a meaningful parcel-level seg-
mentation output is required, which should be consonant
with human recognition.

To address the pain points above, we divide the parcel-
level cropland segmentation into two sub-tasks: 1) pixel-
level crop segmentation and 2) parcel region extraction.
In the first sub-task, we still leverage the powerful deep
learning-based training and inference paradigm, however,
the parcel-level annotation is not needed. Instead, we design
and develop a user-friendly annotation tool to obtain an an-
notator’s limited effort on a few pixel samples, and leverage
the active learning strategy (Settles, Craven, and Friedland
2008) with human-in-the-loop advantages to continuously
improve the pixel-level segmentation accuracy. Compared
with the fine-grained annotation in computer vision, both
our pixel-level annotation and active learning-based train-
ing procedures are lightweight. In the second sub-task, we
design our image processing-based algorithm dedicated to
effectively extracting parcel regions. This design not only
avoids annotating parcel-level labels, but also enables our
system to provide a parcel-level output without any further
training process. Admittedly, a parcel-level result might be
generated by post-processing on a pixel-level segmentation
output, such as using morphological methods to eliminate
the salt-and-pepper effects. Nevertheless, it is difficult to set
the kernel size or keep the parcel shape from distorting. Ob-
taining a parcel-level result by post-processing is thus still
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Figure 1: Framework of the proposed PARCS.

not reliable in clients’ eyes. By consolidating these two sub-
tasks, we remarkably relieve the heavy burden of the parcel-
level annotation job originally assigned to an annotator, and
guarantee the segmentation output in the parcel-level format.

In this paper, we propose PARCS, a deployment-oriented
Al system for robust PARcel-level Cropland Segmentation.
Sentinel-2 satellite image data is utilized as our image
source as commonly used in many previous studies (Gar-
not and Landrieu 2021; Garcia-Pedrero et al. 2019; Masoud,
Persello, and Tolpekin 2019). Moreover, Sentinel-2 data has
been included in our own satellite image database to effi-
ciently support our system. Our key contributions are sum-
marized as follows:

* PARCS is a holistic Al system for parcel-level cropland
segmentation using satellite images. This system appro-
priately integrates multiple disciplinary knowledge from
remote sensing, computer vision, image processing, and
software engineering to precisely resolve clients’ issues.

* With the designed annotation tool and the active learn-
ing strategy, PARCS needs pixel labels only and signif-
icantly improves the annotation paradigm by removing
the parcel-level labeling costs.

* Qur proposed method is robust to generate impressive
parcel-level segmentation results, dramatically expedit-
ing the deployment of the entire system to clients. Our
evaluation results demonstrate the outstanding effective-
ness of our method on both public and in-house datasets.

2 System Design

Fig. 1 illustrates the framework of our proposed PARCS.
We first acquire multi-temporal Sentinel-2 satellite images
from our satellite image database relying on the given time
period and area of interest (Aol). These images are used in
both algorithm branches. In the pixel-level learning flow, the
designed annotation tool initially collects pixel labels on a
small number of samples. We then leverage the active learn-
ing strategy with the annotator’s iterative input to constantly
improve the prediction accuracy of pixel-level crop segmen-
tation model. In the inference stage, a probability map gen-
erated by the trained pixel-level segmentation model is inte-
grated with a corresponding parcel segmentation label map
from the parcel region extraction flow. A parcel-level crop-
land segmentation result is finally achieved. In the following
subsections, we elaborate on each module of our framework.

2.1 Image Data Source

As mentioned in Sec. 1, we use Sentinel-2 satellite images as
our data source. First, they are free and easy to be obtained.

5

Information Input
Swisst Model Operation ==

Annotation Panel
Skt = e
S92, 2%

i
Time- Serles Plxel
% sample Visualization

High-Resolution Reference Map T e

Figure 2: User interface of the annotation tool.

Averaged
Probability
Ma

Input Images

Multi Layer Perceptron Probability Maps

128
+
Softmax

Figure 3: Model of pixel-level crop segmentation.

Second, Sentinel-2 satellites have a high revisit frequency
of 5 days for most places in the world. Third, their high-
est resolution is better than that of other free satellites such
as Landsat-8 (Chakhar et al. 2020). For example, Sentinel-2
satellites provide 10-meter (10-m) resolution images for red,
green, blue, and near-infrared (RGBN) channels and 20-m or
60-m for other channels, while Landsat-8 only provides 30-
m resolution images. Once the satellite images have been ob-
tained, we resize all other channels to 10-m resolution with
bilinear interpolation.

2.2 Annotation Tool

To facilitate the labeling experience and efficiency, we de-
sign an interactive annotation tool for technicians who anno-
tate the sampled data. The user interface is shown in Fig. 2.
A technician needs to provide a geospatial Aol description
of the target area (e.g. a Geographic JavaScript Object No-
tation (GeoJSON) file) and a specific time period in the “in-
formation input” section. The system then extracts corre-
sponding satellite images from our database. Initially, multi-
ple samples are randomly selected to form a queue at the
tool’s backend and one sample is pushed to the frontend
each time. To provide the technician with more surround-
ing visual information, we extract a small patch in which
the sample point at the center. All the valid temporal patches
of this sample point are displayed at the interface. A high-
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resolution image of the sample position is also provided via
Mapbox (Mapbox 2003) on the left side of the interface for
reference only. Meanwhile, a normalized difference vegeta-
tion index (NDVI) curve is also provided for each data cap-
tured time at the bottom, which is defined as NDVI=(NIR-
Red)/(NIR+Red), where “NIR” and “Red” represent near-
infrared and red bands, respectively. An NDVI value indi-
cates the growth of plants on the grounds (Zheng et al. 2015)
because each type of crops is supposed to have its own NDVI
curve pattern. The technician can decide whether a sample
belongs to a specific crop type based on the provided in-
formation. Once the label is selected, the annotation will be
saved to the label dataset for model training.

After a few sample points are labeled, a pixel-level crop
segmentation model can be trained by clicking the “train
model” button. When the training is finished, the system
next uses the trained model to re-evaluate all pixels in the
Aol, and an uncertainty score from the active learning strat-
egy (described in Sec. 2.4) is then calculated for each sam-
ple. New samples with ambiguous scores are chosen for the
next round of annotation. The technician can iteratively la-
bel new samples and train new models until the scores for
all samples show acceptable values. The “inference” button
is designed for model inference on the Aol.

2.3 Lightweight Pixel-Level Crop Segmentation

Unlike other time-series data, due to the unforeseen condi-
tions in space, it is common that satellite images have re-
gions with cloud cover (unexpected white regions) or no data
(abnormal black regions). Therefore, not all temporal data
can be properly utilized. Moreover, the satellite trajectory
causes different image capture time stamps for two adjacent
image tiles. These uncertainties of time sequence hinder the
utilization of time-series-based models such as RNN (Sun,
Di, and Fang 2019) and LSTM (Shi et al. 2015; Ruwurm
and Korner 2018), which assume that all input data are valid
(i.e. without cloud cover or no data) and time stamps for all
samples are the same. To mitigate this issue, we leverage the
Sentinel-2 Scene Classification Layer (SCL) (Main-Knorn
et al. 2017) to detect and replace the cloud-covered pixels
with no data (0 values), so these two kinds of unavailable
pixels can be filtered out by excluding 0 values.

We let T refer to the set of the total temporal sequence
of Sentinel-2 data queries. I7 € RITIXCXHXW denotes

the multi-temporal images acquired from our satellite im-
age database, where I refers to a Sentinel-2 image tile. H,
W, and C are the height, width, and number of channels of

+
1, respectively. sf’“ presents all the valid visual data at the
location of k-th pixel sample. We use 70% of all K labeled

pixel samples in § = {sip1+ sy sf{t } as training set and the
remaining 30% as validation set and apply the pixelwise Fo-
cal Loss(Lin et al. 2017) as our loss function. During the
training process, the pixel sample data at every valid time
stamp 52’“ ik € T,:' is individually fed into the model. In the
inference process, our model generates the prediction result
for every pixel captured at each individual time stamp for
+

[Tiw = (IyT “")uxw, and calculate the average probabil-
ity map output.

Fig. 3 shows our model of pixel-level crop segmentation.
The model adopts multilayer perceptron (MLP) to learn the
patterns from the input of valid images along with the cal-
culated NDVI channel with a limited number of annotated
pixel samples. It predicts the probabilities of the specific
crops for each pixel at every image captured time. Note that
we use group normalization (GN) instead of batch normal-
ization (BN) due to the small amount of annotated samples,
so the batch size is not large enough for batch normalization.

2.4 Active Learning Strategy

Even though inference results can be obtained by labeling a
moderate amount of sample points, we leverage the active
learning strategy (Settles 2009) to improve model perfor-
mance with the annotator’s effort on demand. Specifically,
once obtaining the inference results on the Aol, we calculate
a score to indicate the uncertainty of samples using entropy
of the probability u = ZtT+ —p¢ log(p:), where p; is the pre-
diction probability of the pixel sample at the time stamp t.
Once the uncertainty value is calculated based on entropy,
we use it to sort all the samples from large to small, and
push them back to the front-end for the annotation by a user.

2.5 Parcel Region Extraction

Patch Generation. Fig. 4 depicts our designed parcel re-
gion extraction module. Due to the huge size of one image
tile (e.g. 10,980x10,980), we crop it into smaller patches.
Let PT e RITIXCxHpxWr represent one multi-temporal
patch from 7 T where Hp and Wp are the height and width



of a patch P, respectively. Every patch is processed sepa-
rately and has a one-pixel height/width overlap with the ad-
jacent patches, so that all patch-level segmentation outputs
can be correctly mosaicked back to the image-level result.

Parcel Region Extraction. In natural images, objects al-
ways have the distinct visual appearance, leading to satis-
factory semantic contour extraction using traditional or deep
learning-based edge detectors (Sobel 1982; Canny 1986; Xie
and Tu 2015). Nonetheless, this observation is not easily ap-
plicable to satellite images. For example, some recent stud-
ies explored outlining parcels using deep learning methods
(Masoud, Persello, and Tolpekin 2019; Qiao et al. 2019;
Garnot and Landrieu 2021; Martinez et al. 2021; Huang
et al. 2022), but their shown performance is not accept-
able by the clients in our case. We find that the CNN-based
models suffer from the highly frequent failure of complete
boundary closure of parcels, even though a boundary is ob-
viously identified by human eyes (e.g. Fig. 5c in Garcia-
Pedrero et al. (2019)). This observation echos the distinction
between a segmentation task of natural and satellite images.
Meanwhile, other studies exploited unsupervised methods to
delineate parcels, such as superpixel-based approaches, but
over-segmentation and under-segmentation are always ob-
served due to the difficult control of a superpixel’s compact-
ness (Garcia-Pedrero et al. 2018). The reasons for their mod-
erate performance are mainly two-fold: 1) adjacent parcels
might have very similar color and texture; 2) for 10-m res-
olution Sentinel-2 images, a parcel’s boundary has two or
even one-pixel width only. Mechanically applying the suc-
cessful models and algorithms from computer vision with-
out considering domain knowledge gap is not able to meet
the actual clients’ requirement. Moreover, these methods are
not capable of deployment or generalization, using either a
small study site or supervised approaches.

In order to address the issues above, we formulate the
problem of parcel region extraction (i.e. parcel delineation)
as a search-and-compare task on pixels within an image. In-
spired by various search algorithms (Cormen et al. 2022)
and similarity measures (Moreira, Carvalho, and Horvath
2018), we design the algorithm dedicated to extracting par-
cel regions. To better describe our algorithm, we let PZT] €

RITIXCx1x1 denote a pixel in a multi-temporal patch P,
where ¢ € {1,...,Hp} and j € {1,...,Wp}, respectively.
Let Q(i, j) define the set of the neighboring pixels of each
Psz We calculate the similarity of PZTJ and its neighbor
Pl , for V(m,n) € Q(i, ), and adopt a search algorithm
to partition the maximum regions which have the similar
pixels. We then define P, and P2, respectively as the
adjacent pixels which share valid acqulsmon time existing
in both T sequences (i.e. T/ = T+ N TJr »)- The detailed

algorithm flow is described in Alg. 1

Parcel Mosaicking. Once the patch-level parcels are ex-
tracted, all patches are mosaicked together to generate the
image-level result with the original image height and width
(H x W). The one-pixel overlap at the margin of each patch
is updated depending on the length of the shared border.

Algorithm 1: Parcel Region Extraction

Input: one multi-temporal patch PT ¢ RITIXCxHpxWp. 4

similarity threshold 6
Output: one segmentation label map L € NHP*XWr; g ]a
bel index [
1: Initialize: L < (L;; < 0)mpxwp; ! < 1; a queue
q < 2 to save pixel position to be accessed.
. for each pixel P’; do

3: ifL; ;=0 then

4 push pixel (4, ) to the back of ¢

5: Lz},j 1

6: while q do

7: pop out the visited pixel from the front of ¢
8: for each pixel P .V(m,n) € Q(i,j) do
9: update PLT] , PT

10: calculate s1m1lar1ty g(PL, PL )

11 if Ly, = 0and g(P7, PZ’ ) > 6 then
12: Lpyp <1

13: push pixel (m, n) to the back of ¢

14: end if

15: end for

16: end while

17: l<—1+1

18:  endif

19: end for

2.6 Parcel-Level Cropland Segmentation
Integration

After achieving the averaged pixel-level crop probability
map and the parcel region segmentation label map of I7, we
use a simple voting scheme to fill a parcel region relying on
the most dominant crop class inside it, eliminating the salt-
and-pepper effects within the parcel and outlining the parcel
boundary. The final segmentation result can be exported as
the GeoJSON and GeoTIFF formats for clients’ use, which
have prediction masks with geospatial information.

3 Performance Evaluation

In this section, we describe our implementation details and
conduct experiments on a multi-temporal public dataset and
our in-house dataset collected during deployment. We also
present the subject feedback from clients on PARCS.

3.1 Implementation Details

Datasets. The public dataset we use is PASTIS (Garnot
and Landrieu 2021), which provides multi-temporal agricul-
tural parcel-level annotation using Sentinel-2 satellite data.
It collects 2,433 image patches in France and annotates 18
crop types. The dataset divides images into 5 folds, and we
perform 5-fold cross-validation to accomplish our results.
Our in-house dataset is captured in 2019, comprising 10
labeled areas for rice, corn, and wheat across 6 provinces
in China. Each area has 1 crop type, and contains about
50 Sentinel-2 satellite images and the average image size is
6,000x5,000 pixels. Each area has fine-grained parcel-level



Model

Train w/ parcel anno.
ConvLSTM (2015; 2018)
FPN-ConvLSTM (2021)
U-ConvLSTM (2019)
3D U-Net (2019)

U-TAE (2021)

Train w/ pixel anno.
Ours 0.335M 853 1.7

Param.# OA mloU

1.0IOM 779  49.1
1.26IM  81.6 57.1
1.508M  82.1 578
1.554M 813 584
1.087M 832 63.1

Table 1: Performance comparison of our proposed method
and completing methods on the public PASTIS dataset. The
bold number refers to the best result and the underlined num-
ber denotes the second best result.

annotations for clients to verify our model performance. The
original Sentinel-2 data has uint16 data type, ranging from
0 to 65,535. We clip this value range to 0~4,000 to keep
the vast majority of meaningful data and then normalize all
channel values to O~1. The NDVI channel with the values
from -1 to 1 is concatenated with the normalized Sentinel-2
channels. Regarding the time stamp, we calculate the day of
a year divided by 366 as a normalized input for the model.

Pixel-Level Segmentation Model Training. As afore-
mentioned in Sec. 2.3, for training the pixel-based MLP
model, we use 70% of all labeled samples as the training set
and the rest of the labeled ones as validation data. The learn-
ing rate is set to 0.001 and the cosine annealing learning rate
scheduler is used. The training epoch is set to 3000, taking
around 10 to 20 minutes for the entire training process. We
pick the best model on the validation set as our final model.

Parcel Region Extraction. In our search-and-compare
scheme, we adopt Breadth-first search (BFS) as our search
algorithm. The time complexity of parcel region extrac-
tion is O(HpWp) and extra space complexity is also
O(HpWp) since we need a queue to save neighbors. Note
that Depth-first search (DFS) is also applicable in our case.
We use 8-connected neighbors as Q(i, j), and leverage tem-
poral average cosine similarity defined as in Eq. 1 to com-
pare the neighboring pixels. In other words, we compute co-
sine similarity for each time stamp, and then calculate the
mean of similarity over all time stamps. The default similar-
ity threshold 6 is set to 0.98.
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Evaluation Metric. We use overall accuracy (OA) and
mean intersection over union (mloU) to align the other com-
peting methods on the public dataset. We average the IoU
values across all 10 areas for the in-house dataset.

Development. Our system is mainly built on Python3, us-
ing Plotly Dash for the user interface and PostgreGIS as the
database. We use Cython, Numba as well as parallel pro-
cesses to accelerate the speed of the system.

Model

Ours w/ Initial Round
Ours w/ AL Round 1

Train# mloU

100/100  37.81
50/150  53.32

Ours w/ AL Round 2 50/200 61.80
Ours w/ AL Round 3 50/250  63.93
Ours w/ AL Round 4 50/300  65.16

Pixel-Level w/ AL R4+FH (2004)
Pixel-Level w/ AL R4+SNIC (2017)

300/300 45.32
300/300 50.29

Table 2: Performance comparison of our proposed method
and ablation studies on our in-house dataset. (AL: Active
Learning; R4: Round 4; (#/#) in Train #: new/total pixels
involved in each training round for each area)

3.2 Experiment Results

Results of Public Dataset. In this experiment, we use the
active learning strategy and let the model select the sam-
ples that need to be labeled. We stop iteration when the un-
certainty scores of new selected samples are less than the
default threshold. Table 1 lists the performance compari-
son of our approach and other competing models. Previous
studies mainly leverage CNN-based or time-series LSTM-
based methods with parcel-level annotations. To the best of
our knowledge, U-TAE (U-Net with Temporal Attention En-
coder) is a state-of-the-art model for the PASTIS dataset
(Garnot and Landrieu 2021). As we can see, our model is
able to achieve competitive results compared with U-TAE,
however, we train it with fewer labeled pixels rather than
parcel-level labels, and our model size is ~1/3 of U-TAE’s.

Results of In-House Dataset. First, we evaluate the effi-
cacy of active learning with 4 rounds. We label 50 pixel sam-
ples for each round except the initial round in which we label
100 samples. The first part of Table 2 unveils that our model
accomplishes the acceptable mIoU values (>50.0) even has
only one round of active learning. As the number of iterative
rounds increases, the performance gradually rises up and
tends to be converged. Second, the effectiveness of our par-
cel region extraction module is evaluated. We keep the best
pixel-level crop segmentation model from Round 4 of ac-
tive learning in the experiment above, and replace our parcel
extraction module with some representative superpixel algo-
rithms Felzenszwalb and Huttenlocher (FH) (Felzenszwalb
and Huttenlocher 2004) and Simple Non-Iterative Cluster-
ing (SNIC) (Achanta and Susstrunk 2017), respectively. We
here choose superpixel-based approaches because these al-
gorithms are able to aggregate satellite image pixels into re-
gions of varying sizes in an unsupervised way (Yang et al.
2021), and provide complete boundary closure results de-
sired for parcel shapes. Note that the over-segmentation ef-
fect of superpixels is not an issue because our pixel-level
output can visually aggregate two adjacent superpixels if the
dominant crop class in them is the same.

The second part of Table 2 reveals the performance of
our pixel-level models with these superpixel methods. Even
though we have tuned the hyper-parameters of superpixel
methods to achieve the relative best results, our model with



only one round still greatly outperforms them. It is difficult
to improve the local segmentation without impact on global
performance via hyper-parameter tuning for superpixel al-
gorithms. Specifically, FH is not stable for aggregating pix-
els near a parcel’s boundaries. The cluster-based superpixel
algorithm SNIC tends to generate superpixels with similar
compactness, downgrading the parcel boundary delineation.

Fig. 5 provides three visualized results of our final parcel-
level cropland segmentation in different locations across
three provinces in our in-house dataset. The results show that
our approach is greatly capable of segmenting the croplands
in accurate parcel shapes regardless of various crop land-
scape. It also clearly separates all the city areas, most of the
lanes, and even some areas hard to distinguish in the visual
images, such as the holes on the top left quarter of the third
position. Note that most of the defective predictions occur
on the boundaries of the croplands, because the Sentinel-2
satellite images have the inherent spatial error of less or ap-
proximately 1 pixel. Hence, the pixels at the boundaries of
the croplands possibly have 1-pixel misalignment with the
cropland ground truth at different time stamps, but this ir-
reparable error is acceptable.

3.3 Deployment of PARCS

To collect subjective feedback from clients on our sys-
tem deployment, we design a questionnaire to cover usabil-
ity and reliability (Felderer and Ramler 2021), especially
concentrating on the comparison of our previous pixel-
level cropland segmentation system and the current PARCS.
The overall clients’ rating significantly rises from 3.65 to
4.87. The most impressive compliments include the robust
parcel-level segmentation result on the in-house dataset, and
lightweight annotation procedure to greatly reduce the labor
costs. We believe PARCS confidently overcomes the salient
pain points of clients.

4 Conclusions and Discussion

In this paper, we propose our deployment-oriented Al sys-
tem PARCS for parcel-level cropland segmentation of satel-
lite images. To meet the clients’ challenging needs of parcel-
level segmentation results without providing parcel annota-
tions, we carefully design a two-branch method to address
these challenges. To reduce the huge overhead of a parcel-
level labeling task, we train an active learning-based crop
segmentation model with limited pixel sample labels instead
of expensive parcel-level annotation. To guarantee parcel-
level output, we design an algorithm of parcel region ex-
traction for outlining parcel boundaries and further remov-
ing salt-and-pepper effects of the pixel-level output from the
crop segmentation model. The final parcel-level segmenta-
tion results of PARCS are evaluated using public and in-
house datasets. Both the experiment results and the subjec-
tive feedback confirm the robust effectiveness of PARCS.
We also discuss valuable aspects of our system as follows.

Deployment Experience. We observe that PARCS can re-
markably reduce the burden of both clients and ours. On
one hand, lightweight pixel-level annotation and limited re-
engagement in the active learning loop substantially reduce

(a) Area 1 (c) Area 3
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Figure 5: Visualization of our parcel-level segmentation re-
sults in three different areas in our in-house dataset. (In (d)-
(f), GT: ground truth; In (g)-(i), white: true positive; black:
true negative; red: false positive; blue: false negative)

the workload of an annotator. On the other hand, the robust-
ness and the time consumption of PARCS are very competi-
tive, enabling us to provide an agile response to more clients
with diverse needs. Although a performance metric is easy
to evaluate a model, it does not mean everything. There is
no significant difference between the mIoU values of parcel-
level segmentation and pixel-level with salt-and-pepper seg-
mentation results, but the latter output format is not accept-
able in practice. In our scenarios, a robust parcel-level output
rather than a slightly improved OA/mloU value is essential
to boost the success of our deployment.

Model Flexibility. It is natural that land cover in satellite
images changes over time, such as from cropland to urban
land. In this case, our system tends to be conservative to
recognize and segment these changed areas out from the
unchanged regions. Meanwhile, some clients need parcel
boundary delineation without crop type identification. Un-
der this circumstance, we deploy the standalone parcel re-
gion extraction module only to meet their demands.

Future work. One of our future tasks is to improve our ca-
pability to accept images with dense cloud cover or no data.
We are also developing an online portal for PARCS with
more capacity of human-computer interaction with potential
customers. This way, users can gain real experience instead
of inferring a system’s feasibility from whitewashed demos.
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