

Multispectral Masked Autoencoder for Remote Sensing Representation Learning

Introduction

- \succ Automated analysis of remote sensing (RS) imagery is the key to monitoring global issues. Hundreds of satellites collect plentiful RS data on a daily basis. However, most images remain unlabeled, thus supervised learning algorithms are unable to make full use of the massive amounts of RS data.
- \succ Self-supervised learning (SSL) aims to obtain image representations without explicit annotation efforts and has two categories: contrastive methods and generative methods. However, most of these methods are pre-trained on ImageNet.
- \succ Their generalization to multispectral RS tasks is not guaranteed due to the domain gap. Some data augmentation in contrastive methods such as color jittering and center-focused features might lose the spectrum information and the spatial details.
- \succ To address this issue, we leverage the benefits of generative methods and build a multispectral masked autoencoder (MAE) to learn RS representation from RGB and Near-infrared (RGBN) data. \succ Following [2], it has a Vision Transformer (ViT) encoder that maps the unmasked data to a latent representation and a lightweight decoder that reconstructs the original image from the latent representation.

- IEEE, 2022.
- [2] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." *Proceedings of the IEEE CVPR*. 2022.
- and Remote Sensing Symposium. IEEE, 2019.
- Observations and Remote Sensing 14 (2021): 3228-3242.

Yibing Wei^{1,2}, Zhicheng Yang², Hang Zhou², Mei Han², Pedro Morgado¹, Jui-Hsin Lai² ¹University of Wisconsin, Madison, WI, USA ²PAII Inc., CA, USA

Methods

- \succ We perform self-supervised pre-training on the BigEarthNet [3] dataset. The dataset provides **590,326** multispectral Sentinel-2 satellite images of a resolution of **10m**.
- \succ To evaluate the representation, we conduct supervised training on NaSC-TG2 [4] dataset with end-to-end fine-tuning, which contains **20,000** multispectral images at 100/200/300m resolution with 10 scene classification labels.

[1] Khan, Adnan, et al. "Contrastive Self-Supervised Learning: A Survey on Different Architectures." 2022 2nd International Conference on Artificial Intelligence (ICAI).

[3] Sumbul, Gencer, et al. "Bigearthnet: A large-scale benchmark archive for remote sensing image understanding." *IGARSS 2019-2019 IEEE International Geoscience*

[4] Zhou, Zhuang, et al. "NaSC-TG2: Natural scene classification with Tiangong-2 remotely sensed imagery." IEEE Journal of Selected Topics in Applied Earth

Results

- twice as much data as the BigEarthNet.
- representation learning.

Method

ResNet50 w/ Image SimCLR+ResNet5 SimCLR+ResNet5 MAE+ViT-B w/B

Top-1 accuracies of the downstream scene classification task on NaSC-TG2 dataset with CNN or ViT backbones under different SSL settings. (BEN3 or 4: BigEarthNet(RGB) or (RGBN))

Future Work

 \succ The top-1 validation accuracies are 94.05%, 94.45% and 98.3% for the ImageNet-1K (IN-1K) pretrain model, BigEarthNet RGB SSL model and RGBN SSL model, respectively. When trained on RGB data only, the RS SSL model still outperformed the IN-1K baseline on the RS classification task, even though IN-1K has more than

 \succ The results indicate that the features extracted from RS images are more effective than those from the natural images for the RS task. This domain gap makes RS self-supervised pre-training generalized better in RS tasks. Moreover, the multispectral feature learned with a near-infrared signal increases the top-1 validation accuracy by **3.8%**, showing that the multispectral feature is crucial in RS

	Train/Validation Ratio		
	2:8	5:5	8:2
geNet(RGB)	92.85	93.64	94.05
50 w/ BEN3	92.25	93.37	94.45
50 w/ BEN4	92.90	95.59	97.13
EN4	93.28	96.11	98.30

 \succ Our future work includes utilizing spatial-temporal information to introduce strong inductive bias to downstream tasks for more effective transfer learning.