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Abstract

The Agriculture-Vision Challenge in CVPR is one of
the most famous and competitive challenges for global
researchers to break the boundary between computer vi-
sion and agriculture sectors, aiming at agricultural pattern
recognition from aerial images. In this paper, we propose
our solution to the third Agriculture-Vision Challenge in
CVPR 2022. We leverage a data pre-processing scheme and
several Transformer-based models as well as data augmen-
tation techniques to achieve a mIoU of 0.582, accomplish-
ing the 2nd place in this challenge.

1. Introduction

Computer vision applications in agricultural domain has
become one of hot topics nowadays, especially using re-
mote sensing satellite images and aerial images. With the
rapid development of deep learning methods, numerous re-
search studies have proposed pioneer and practical solutions
to various computer vision problems in agriculture [2–4,9].
Aside from fruitful research achievements, various algo-
rithm challenges have been held at top-tier conferences for
global researchers in recent years, in order to explore more
effective algorithms to solve the specific problems. The
Agriculture-Vision Challenge in CVPR since 2020 is one
of most famous and competitive challenges in this inter-
disciplinarity study. It aims at applying computer vision
algorithms to agricultural pattern recognition from high-
resolution aerial images. This year, CVPR 2022 holds the
3rd Agriculture-Vision Challenge, and we form our team
“PAII-RS” to participate in this contest.

2. Materials and Methods
In this section, we elaborate on the given datasets, the

pre-processing method, the proposed deep learning-based
framework, and the test-time augmentation (TTA) strategy.

2.1. Description of Dataset

The challenge this year provides the entire Agriculture-
Vision dataset released in [1]. It contains 94,986 aerial
farmland images collected throughout 2019 across the U.S.
Each image has a size of 512×512 pixels and has 4 chan-
nels (RGB and NIR). A total of 9 label classes are manually
labeled for every image. Table 1 shows the given amount
of images in each class. Note that many images have mul-
tiple labels, and even have overlapped labels (one pixel has
multiple labels).

Although the amount of the given training data is consid-
erable, we still generate more data following the data aug-
mentation scheme of the winner solution last year. They
conducted an image mosaic scheme to enable the model to
have multi-scale views during the training. To fit the model
input size, we create two new datasets using mosaicked im-
ages with down-sampling 2X (2 times) and down-sampling
3X as shown in Fig. 1. The down-sampling dataset has
the same image size of 512×512 pixels that the recogni-
tion model can share the same network architecture among
1X, 2X, and 3X imagery.

2.2. Data Pre-Processing

We observe that the image counts in each category are
uneven. For example, the image count of the background
class is 25 times larger than the water class. To tackle the
unbalance issue, we try to sample more images in the few-
shot classes. The re-sampled image counts are listed in Ta-
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Table 1. Information of the given and resampled datasets for training and validation categories.

Class Index Class Name Original Amount (Train/Val) Resampled Amount (Train/Val)

0 Background 56944 / 18334 75121 / 13642
1 Double Plant 6234 / 2322 10961 / 2294
2 Drydown 16806 / 5800 19320 / 3383
3 Endrow 4481 / 1755 8544 / 1858
4 Nutrient Deficiency 13308 / 3883 14859 / 2610
5 Planter Skip 2599 / 1197 5361 / 1015
6 Water 2155 / 987 4132 / 721
7 Waterway 3899 / 696 6024 / 1109
8 Weed Cluster 11111 / 2834 14423 / 2773
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SegFormer
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Figure 1. Framework of our deep learning-based model.

ble 1.

2.3. Framework

Fig. 1 shows our deep learning-based framework. Seg-
Former is a Transformer-based efficient segmentation
model [7]. It designs a hierarchical Transformer encoder
with multi-level feature outputs. Unlike other cumbersome
decoders, SegFormer’s decoder adopts MLP layers to ag-
gregate multi-scale feature outputs from different layers.
One of the key advantages of SegFormer is that its model
size is relatively small but the performance keeps outstand-
ing. Therefore, SegFormer is suitable for this challenge due
to the model size parameter limit of 150M.

SegFormer provides six versions with various settings
of Transformer encoders, leading to different model sizes.
These six models are named from B0 to B5, with the in-
creased model size. To follow the policy, we select Mix
Transformer (MiT) B3 and Mix Transformer B2 as our
training models. Their model size information can be found
in Table 7 “Mix Transformer Encoder” in [7]. After ob-
taining the individual inference result from each model, the
model ensemble is performed to predict the final segmenta-
tion results.

2.4. Test-Time Augmentation

Since our models are trained with 1X, 2X, and 3X down-
sampling imagery, we conduct the same processing on the
test dataset. In addition to the scale augmentation, we in-
clude image rotation and flip.

3. Results
3.1. Evaluation Metric

The required evaluation metric is the average Intersec-
tion over Union metric (mIoU), which is defined as Eq. 1 to
measure the performance.

mIoU =
1

c

∑ Area (Pc ∩ Tc)

Area (Pc ∪ Tc)
(1)

where c is the number of label classes (8 foreground classes
+ 1 background class for this challenge); Pc and Tc are the
predicted label mask and ground truth label mask of the
class c, respectively.

3.2. Experiment Results

Table 2 presents our results, the baseline provided by
the host Agriculture-Vision organizers, and the results of
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Table 2. Performance comparisons among various models. The bold font of numeric results indicates the best performance on the test set.
BG: Background; DP: Double Plant; D: Drydown; E: Endrow; ND: Nutrient Deficiency; PS: Planter Skip; W: Water; WW: Waterway;
WC: Weed Cluster. The number in the parentheses following the class name refers to the class index.

Models mIoU BG(0) DP(1) D(2) E(3) ND(4) PS(5) W(6) WW(7) WC(8)

(Other methods, on the val set)
Agriculture-Vision baseline(RGBN) [1] 0.434 0.743 0.285 0.574 0.217 0.389 0.336 0.736 0.344 0.283
MiT-B3(RGBN) [5] 0.454 0.768 0.371 0.609 0.245 0.424 0.413 0.692 0.269 0.299
MiT-B5(RGB) [6] 0.464 0.755 0.370 0.585 0.227 0.313 0.414 0.802 0.401 0.304
MiT-B5(RGBN) [6] 0.490 0.762 0.373 0.618 0.246 0.428 0.420 0.813 0.437 0.318

(Our implementation, on the test set)
HRNet-W48+OCR [8](RGB baseline) 0.413 0.717 0.316 0.567 0.233 0.269 0.283 0.718 0.289 0.326
MiT-B3 [7](RGB baseline) 0.448 0.720 0.395 0.557 0.325 0.364 0.330 0.687 0.293 0.358
MiT-B2 [7](RGBN+Our method) 0.554 0.778 0.483 0.632 0.476 0.570 0.403 0.768 0.410 0.466
MiT-B3 [7](RGBN+Our method) 0.563 0.773 0.471 0.640 0.452 0.569 0.442 0.782 0.463 0.475

(Our implementation, on the test set)
Model Ensemble(RGBN+Our method) 0.582 0.777 0.485 0.646 0.481 0.573 0.471 0.779 0.547 0.479

other methods. Note that other baselines evaluate their per-
formance on the validation set due to the unavailable test
set. As we can see, while our single model baselines are
competitive with other baselines, our proposed method ef-
fectively improves the single model performance. Even
though some single models have peak performance in some
classes (0.778 for “Background” and 0.782 for “Water”),
our model ensemble enjoys the merits of multiple single
models’ strength to achieve the mIoU of 0.582. It also
shows that our ensemble results significantly outperform
other baselines and our implementation of various single
models.

4. Conclusions
In this paper, we propose our solution to the 3rd

Agriculture-Vision Challenge in CVPR 2022. For data us-
age, we perform data pre-processing and test data augmen-
tation schemes. Several SegFormer models are leveraged.
We finally accomplish a mIoU of 0.582, achieving the 2nd
place in this challenge.

Future Directions. The potential applications of our
proposed algorithm include crop type identification in pre-
cision agriculture, agricultural asset estimation and agricul-
tural insurance product design in the Environmental, Social,
and Governance (ESG) domain. These future directions can
illuminate the revitalization of rural areas and facilitate the
service of inclusive finance in an eco-friendly way.
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