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ABSTRACT

Single image dehazing is a challenging vision problem aiming to

provide clear images for downstream computer vision applications

(e.g., semantic segmentation, object detection, and super resolution).

Most existing methods leverage the physical scattering model or

convolutional neural networks (CNNs) for haze removal, which

however ignore the complementary advantages between each other.

Especially lacking marginal and visual prior instructions, CNN-

based methods still have gaps in details and color recovery. To

solve these, we propose a Prior-based with Decoupling ability De-

hazing GAN Network (PDD-GAN), which is based on PeleetNet

and attached with an attention module (CBAM). The prior-based

decoupling approach consists of two parts: high and low frequency

filtering and HSV contrastive loss. We process the image via a band-

stop filter and add it as the fourth channel of data (RGBFHL) to

decouple the hazy image at the structural level. Besides, a novel

prior loss with contrastive regularization is proposed at the visual

level. Sufficient experiments are carried out to demonstrate that

PDD-GAN outperforms state-of-the-art methods by up to 0.86db in

PSNR. In particular, extensive experiments indicate that RGBFHL
increases by 0.99db compared with the original three-channel data

(RGB) and the extra HSV prior loss escalates by 2.0db. Above all,

our PDD-GAN indeed has the decoupling ability and improves the

dehazing results.

CCS CONCEPTS

• Computing methodologies→ Computer vision problems;

Computer vision representations; Computer vision tasks.
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(a) Hazy input (b) Ground-truth (GT)

(c) PSD[8] (d) PDD-GAN

Figure 1: Dehazing examples of two prior-based networks.

As shown in the figure, the dehazed image of our model

performs better and is closer to the ground-truth (GT).

1 INTRODUCTION

Under poor weather circumstances such as fog, haze and smog,

there are extensive tiny suspended particles in the outdoor air,

which will refract or scatter the light[10, 45]. These lights mixed

with the observed targets lead to degradation in both the structure
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and vision of the images captured by outdoor equipment. Conse-

quently, images suffer from definition degradation, color distortion,

edge occlusion and texture blur[1, 9, 20]. To address these issues,

a number of dehazing algorithms have been developed, and the

results can optimize a variety of downstream computer vision tasks,

such as semantic segmentation, detection and super resolution.

An important physical scattering model[29, 30] is widely used

to describe the formation of hazy images:

I(𝑥) = 𝐽 (𝑥)𝑡 (𝑥) +𝐴(1 − 𝑡 (𝑥)) (1)

where, 𝐼 (𝑥) is an observed hazy image and 𝐽 (𝑥) is a haze-free

image; 𝑡 (𝑥), 𝑥 and 𝐴 represent the medium transmission map,

pixel coordinate and global atmospheric light, respectively. Early

methods[2, 3, 21, 25, 33, 39, 50] attempted to estimate the trans-

mission map through prior knowledge, and then restore the image

through the physical model. However, such physical methods still

have inevitable limitations, which strongly depend on estimating

the parameters of the physical model and are inapplicable to com-

plex and variable natural scenes. For instance, image dehazing based

on dark channel prior[16] is generally not effective for water sur-

face areas and large sky areas. Recovering to a haze-free image only

based on this physical model is weakly adaptable because of the

difficulty in estimating all parameters properly.

In recent years, deep learning has achieved great success and

convolutional neural networks (CNNs) have been introduced into

image dehazing. CNN-based methods inversely calculate the param-

eters of the physical model for dehazing[4, 28, 34, 47]. Usually, it is

difficult to accurately estimate these intermediate parameters due

to the lack of real-world hazy images and effective physical priors.

With the development of image dehazing, a variety of end-to-end

CNN-based methods[6, 11, 22, 26, 32, 44, 49] have been proposed to

simplify the dehazing problem by learning the hazy-to-clear image

conversion directly from the network. Nevertheless, the following

problems still exist: (1) Despite being better than traditional meth-

ods, the results have defects in edge and color restoration. (2) In

addition, most current CNN-based methods just increase the depth

of the network. In other words, they enhance the nonlinearity of the

system without taking into account the coupling effect of the haze

and image background, which lacks the effective compensation of

the dehazing process.

To deal with the problem of unclear objects recovery caused by

current image dehazing algorithms, Dong et al.[13] and Shyam et

al.[36] proposed to separate the low-frequency and high-frequency

information from the image and integrate the frequency prior into

the discriminator to fuse the features, failing to improve the ability

of the generator to extract features and explain the relationship

between the hazy medium and image background. As for color

distortion, the dark channel prior[16] and the color attenuation

prior[50] conclude that haze will affect the color, saturation and

brightness of the image, and a strong coupling exists between them.

On the one hand, edge and texture information are blurred by haze,

resulting in unclear outlines. On the other hand, the haze obscures

some color information and weakens the saturation and brightness

of the image. Based on the above considerations, we propose a

method to decouple the haze and background on the basis of prior

knowledge, in terms of both image structure and vision.

Structural prior knowledge is exploited by leveraging the four-

channel image (RGBFHL) as the input and label in our model. Specif-

ically, the band-stop filtering result of the image is used as the fourth

channel on the basis of the original three-channel data (RGB). In

addition, a contrastive prior loss in hue, saturation and value (HSV)

space is designed to achieve visual decoupling in our model, in

order to distinguish the difference in color, saturation, and bright-

ness between hazy and clear images. In this paper, we propose a

novel Prior-based GANNetwork with Decoupling Ability for Single

Image Dehazing (denoted as PDD-GAN).

In summary, our contributions are as follows:

• To the best of our knowledge, our model is the first to de-

couple and compensate hazy images based on structural and

visual priors. The dehazing framework can restore hazy im-

ages to high-quality haze-free ones, showing state-of-the-art

performance in accessible publicly dehazing scenes.

• In addition to the RGB channels, the image information from

the band-stop filtering process is included in our input and

added as the fourth channel into the network for training.

Besides, we have verified that the high and low frequency

can preserve more edge and internal information.

• We utilize the distortion of hazy images in color, saturation,

and brightness to design a prior loss in HSV space. This loss

is regularized by contrastive learning to achieve the visual

decoupling of the image.

• We implement sufficient experiments and demonstrate on

several image quality evaluationmetrics that the four-channel

input method and the prior loss method can improve the

dehazing effect.

2 RELATEDWORK

In recent decades, a lot of dehazing methods have been proposed,

which can be roughly divided into three types: physical methods,

neural network-based methods and prior-based CNN methods.

2.1 Physical Methods

Early physical methods estimate the parameters of the physical scat-

tering model based on the statistical observations of images. These

methods statistically summarized the differences in color (dark

channel prior[16] color-lines prior[33], color attenuation prior[50],

haze lines prior[3]) and structure (change of detail prior[25], gra-

dient channel prior[21]). For example, Fattal et al.[33] observed

a generic regularity in natural images where the pixels of small

image patches typically exhibited an ID distribution in RGB color

space and then used it for recovering the scene transmission. Kaur

et al.[21] utilized image gradients to estimate depth information

and atmospheric light, overcoming problems like texture distortion

and transmission map estimation errors to a certain extent. Despite

having achieved some success, approaches based on prior knowl-

edge have significant limitations and are usually inapplicable to

complex and changeable natural scenes.

2.2 Neural Network-based Methods

Gradually, methods based on neural network were introduced into

the dehazing task. Initially, Cai et al.[5] and He et al.[17] applied

the CNN to the dehazing scene by estimating the transmittance
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Figure 2: Overview of the proposed PDD-GAN framework. Our model consists of a generator and a discriminator. Prior-based

methods include four-channel inputs (RGB channels and FHL channel processed by the band-stop filter) and contrastive prior

loss in HSV space.

parameters of the physical model. Ren et al.[34] proposed a multi-

scale deep neural network to dehaze a single image by learning

the relationship between hazy images and their transmission maps.

With the development of deep learning in the field of image dehaz-

ing, Li et al.[22] directly generated clear images through a light-

weight end-to-end network AOD-Net, rather than estimate the

transmission matrix and atmospheric light separately, as in most

previous models. Liu et al.[26] implemented an attention-based

multi-scale estimation end-to-end network GridDehazeNet, which

could dehaze by extracting information between different scales.

Xu et al.[32] proposed an end-to-end feature fusion attention net-

work FFA-Net, which improved the representation ability through a

designed attention module. Dong et al.[12] developed a simple and

effective enhancement decoder based on the principle of gain and

error feedback to restore images. However, dehazing will have an

upper limit since the neural network is a black box. These methods

fail to take effective priors into consideration, leading to blurred

reconstructed images, limited dehazing ability and easily producing

color distortion.

2.3 Prior-based CNN Methods

In general, although the physical dehazing algorithms are conve-

nient and this process increases little noise, the scene is severely

limited. To achieve a better dehazing effect, some researchers re-

cently combined prior knowledge and CNNs together as a new type

dehazing method. Liu et al.[13] designed an end-to-end GAN net-

work, adding frequency information as additional prior knowledge

to the discriminator for fusing features. Shyam et al.[36] proposed

a dual discriminator that independently learned low-frequency and

high-frequency information to guarantee the restoration of image

color and structural properties. Chen et al.[8] designed a synthetic-

to-realistic dehazing framework via a loss committee with physical

priors. However, these methods only take some priors as additional

constraints and can’t utilize them effectively. Therefore, a prior-

based end-to-end dehazing GAN network have been proposed in

this paper.
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(a) GT (RGB) (b) GT (FH) (c) GT (FL) (d) GT (FHL)

(e) Hazy Image (RGB) (f) Hazy Image (FH) (g) Hazy Image (FL) (h) Hazy Image (FHL)

Figure 3: High frequency (FH), low frequency (FL) and band-stop filtering (FHL) results of GT and hazy image. As shown in the

figure, FH mainly contains outlines of the object. FL retains internal information without the texture. And FHL is similar to FH
but retains more details.

3 METHODOLOGY

To equip the network with decoupling ability and avoid learning

the same features multiple times, we introduce two kinds of priors

into our framework. The first one transfers images to the frequency

domain for structural decoupling and the second one analyzes the

loss in HSV space for visual recovery.

(a) Edge-intensity (b) Information-entropy

Figure 4: Statistical chart of high frequency and low fre-

quency information. (a) is the edge intensity calculated by

sobel operator of hazy images and GT[35, 48]. (b) is the infor-

mation entropy of images calculated by entropy formula[31].

3.1 Prior Knowledge Decoupling

It can be known from some priors [3, 16, 21, 25, 33, 50] that the haze

or fog is blended with the image background in various ways. Par-

ticularly, the object’s outlines are blurred, and the hue, saturation

and lightness are significantly affected by the haze. Compared with

the ground-truth (GT) in structure, the texture or edge of the hazy

image can hardly be distinguished. Additionally, the haze visually

drops some color details and weakens the saturation and brightness

of the image. If these issues are solved unilaterally only by increas-

ing the depth of the neural network, models will be easily over

fitting. Thus, the following is analyzed in terms of both structural

and visual decoupling to overcome the haze-split challenge.

Structural Decoupling. The structural information of an image

can be refined into a collection of edge and internal information.

The former refers to the set of pixel points with step change in

the gray scale of the surrounding pixels, namely the outline of the

image, while the latter is the collection of those pixel points where

image pixels change slowly in gray scale, and denotes the main

content contained in the image.

In computer vision and signal processing, the structural infor-

mation of an image can be transformed from the spatial domain

to the frequency one. Frequency is a basic indicator characterizing

the gradient of gray scale, specifically the sharpness of gray scale

changes in an image. High-frequency information (FH) refers to

dramatically changing parts, like outlines and delicate textures. We

calculate the edge intensity of hazy and haze-free images processed

by high-pass filter and low-pass filter respectively on the dataset

NTIRE’18[40]. As shown in Fig. 4(a), the values of FH are the high-

est (GT: 35, hazy image: 24) and the gap between GT and hazy

images is smaller than the origin (20→11). High value means the

ability of FH to retain more edge information, and small gap means

less haze influence, demonstrating that FH images eliminating haze

disturbance indeed preserve edge information.

On the contrary, low-frequency information (FL) refers to slowly

changing parts, laying more emphasis on the primary information



PDD-GAN: Prior-based GAN Network with Decoupling Ability for Single Image Dehazing MM ’22, October 10–14, 2022, Lisboa, Portugal

(a) GT (RGB) (b) GT (HSV) (c) GT (RGB) (d) GT (HSV)

(e) Hazy Image (RGB) (f) Hazy Image (HSV) (g) Hazy Image (RGB) (h) Hazy Image (HSV)

Figure 5: Two examples of hazy and haze-free images transformed into HSV images. Compared to RGB, the HSV images shows

a great visual difference between the hazy images and GT.

of the image, such as brightness, color and saturation informa-

tion. We calculate the information entropy on the same data set

to measure the information retained in the image. As shown in

Fig. 4(b), the values of FL are 6.9 and 7.1 of GT and hazy images

respectively. The gap between GT and hazy images is smaller than

the origin (0.7→0.2). High value means the ability of FL retaining

more internal information, and small gap means less haze influence,

demonstrating that FL images eliminating the haze disturbance

indeed preserve internal information.

Based on what is discussed above, we use the advantages of high

and low frequency by band-stop filtering. Some filtering examples

in Fig. 3. The objects’ outlines of the FH images are clear but drop

the internal information. The main parts are retained in FL images

while outlines and texture are blurred. Our network takes frequency

prior as additional constraints to compensate edge information and

achieve the structural decoupling of the model. Specifically, after

the Fourier transform of the image, we process the outcome with a

band-stop filter to generate the fourth channel image (RGBFHL).

Visual Decoupling. Images can be visually represented in multiple

spaces such as RGB, HSV and HSL. Different color spaces emphasize

different information. For example, RGB space[14] is more suitable

for image processing at the hardware level, and the relationship is

not intuitive between the values of the three color components and

generated colors, making quantitative analysis difficult. However,

HSV space[38] is more similar to the human perception of color

information which contains the brightness and saturation of an

image. Therefore, transforming images into a more appropriate

space can better represent visual information.

The difference between hazy and haze-free images can be clearly

distinguished in a visual way. Firstly, He et al.[16] found a key obser-

vation that a majority of local patches in haze-free outdoor images

contain some pixels with very low intensities in at least one color

channel. Secondly, Zhu et al.[50] claimed that the concentration

of haze is proportional to the difference between brightness and

saturation. Beyond that, most prior knowledge states that haze has

an influence on the color, saturation and brightness of an image,

and they are coupled tightly together. We convert the image to HSV

space due to the difficulty in separating these differences in RGB

space. Fig. 5 shows a huge visual difference between the hazy and

haze-free images. Thus a prior loss is designed to achieve visual

representation. This section is highlighted in 3.3 Loss Function.

Figure 6: The structure of Stem Block and Dense Block

3.2 Network Architecture

The architecture of PDD-GAN is introduced in this section. As

shown in Fig. 2, the lightweight PeleeNet[41] is used as the back-

bone of the network. First, input is processed by stem block for

shallow feature extraction. Then, feature maps pass through three

down-sample groups (1-3) which composed of 4, 6, 8 dense blocks

respectively to extract deep features. After that, the generated fea-

ture maps are upsampled by groups (4-7) containing five dense

blocks. During the upsampling process, output features are fused
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(a) Inputs (b) Dehaze-Net (c) AOD-Net (d) GridDehazeNet (e) FFA-Net (f) MSBDN-DFF (g) DehazeFlow (h) PDD-GAN (i) GT

Figure 7: Comparison of PDD-GAN with the state-of-the-art methods on SOTS outdoor benchmark.

with the downsampled ones after four jump connections and finally

recovered to a haze-free (RGBFHL) image.

What’s more, the CBAM attention module[43] in the dense block

is deployed to make the model pay more attention on channels,

as shown in Fig. 6. In this way, in addition to ensure the feature

representation ability, the network would increase the weight of

the fourth channel decoupling information.

3.3 Loss Function

L1 loss. To measure the pixel-wise reconstruction effect, we use

the L1 loss to calculate the loss on four channels (RGBFHL).

L𝐿1=
1

𝑁

𝑁∑
𝑖=1

��𝐺4𝑐 (𝐼
𝑖
4𝑐 ) − 𝐽 𝑖4𝑐

�� (2)

Where 𝐼 𝑖4𝑐 and 𝐽 𝑖4𝑐 represent the hazy image and corresponding

GT with four channels, respectively.𝐺4𝑐 (𝐼
𝑖
4𝑐 ) is the four-channel

output produced by generator.

Perceptual loss. We adopt perceptual loss[19] to evaluate the

semantic-wise reconstruction effect, including perceptual and style

similarity in feature map space.

L𝑃𝑙=
1

𝑁

𝑁∑
𝑖=1

(��𝜙 (𝐼 𝑖3𝑐 ) − 𝜙 (𝐽 𝑖3𝑐 )
��2
2 +

��𝜑1 (𝐼 𝑖3𝑐 ) − 𝜑1 (𝐽
𝑖
3𝑐 )

��2
2

)
(3)

𝜑1 (𝑥) = 𝜙 (𝑥) · 𝜙 (𝑥 ′) (4)

Where 𝐼 𝑖3𝑐 and 𝐽 𝑖3𝑐 denote the hazy and clear images with RGB

channels, respectively. 𝜙 (·) represents the 30th layer feature map

of vgg16 network[37], 𝑥 ′ is the transpose of 𝑥 .

Prior loss. According to the difference between hazy and clear

images in HSV space, we design a prior-based loss function. This

prior loss can compare the difference between the output and GT

in hue, saturation and brightness.

L𝑃𝑟=
1

𝑁

𝑁∑
𝑖=1

(��𝐺ℎ (𝐼
𝑖
4𝑐 ) − 𝐽 𝑖ℎ

�� +
����� 𝜑2 (𝐺𝑠𝑣 (𝐼

𝑖
4𝑐 )) − 𝜑2 (𝐽

𝑖
𝑠𝑣)

𝜑2 (𝐺𝑠𝑣 (𝐼 𝑖4𝑐 )) − 𝜑2 (𝐼 𝑖𝑠𝑣) + 𝜀

�����
)

(5)

𝜑2 (𝑥) = 𝑥𝑠 − 𝑥𝑣 (6)
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where 𝐺ℎ (𝐼
𝑖
4𝑐 ) and 𝐺𝑠𝑣 (𝐼

𝑖
4𝑐 ) are the outputs with H channel and

S, V channels of the generator, respectively. 𝐽 𝑖
ℎ
and 𝐽 𝑖𝑠𝑣 denote H

channel and S, V channels of GT, respectively. 𝐼 𝑖𝑠𝑣 is the S and V

channels of the hazy image. 𝜀 is a minimal constant to avoid the

meaninglessness of the denominator. 𝑥𝑠 and 𝑥𝑣 represent the S and
V channel of input 𝑥 , respectively.

Based on the linear relationship between haze and the value

difference between saturation and brightness[50], we propose a

contrast regularization method[7, 15], and regard the hazy images

as negative samples and GT as positive samples. The purpose is

to expand the distance between dehazed and hazy images and

reduce the gap between dehazed images and GT as well. Contrast

regularization draws on the idea of clustering method, which makes

the network learn the coupling characteristics between haze and

image background by itself. The negative samples, hazy images, are

used to restrict the feasible solution space, and the ablation study

demonstrates prior loss improves the dehazing performance (see

4.3).

Adversarial loss. 𝐷 (𝐺 (𝐼 𝑖4𝑐 )) is the output of the discriminator.

L𝐴𝑙=
1

𝑀

𝑀∑
𝑖=1

log
(
1 − 𝐷 (𝐺 (𝐼 𝑖4𝑐 ))

)
(7)

Loss of the generator. We combine the loss mentioned above

together as generator loss function to regularize our GAN network.

L𝐺𝑟=𝜆1L
𝐿1 + 𝜆2L

𝑃𝑙 + 𝜆3L
Pr + 𝜆4L

𝐴𝑙 (8)

where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are weights of those sub-loss functions.

4 EXPERIMENTS

In this section, we make a comparison with seven state-of-the-art

models, and then ablation study is complemented to verify the

effectiveness of the proposed prior-based decoupling method.

4.1 Experiment Settings

Datasets.Ourmodel is trained and verified on the RESIDE dataset[23].

The dataset contains RESIDE-V0, RESIDE-Standard and RESIDE-

𝛽 three versions. All outdoor training sets (OTS) are chosen for

training, including OTS in RESIDE-V0 and data in RESIDE-𝛽 . The
first set contains 313,950 outdoor hazy and clean image pairs, and

the second set contains 72,135 image pairs. The number of image

pairs is 386,085 in total. We evaluate our model and compare the

results with the state-of-the-art methods on the OTS of the SOTS

benchmark provided by RESIDE.

Training Details. We use the ideal band-stop filter which set

band width as 60HZ and the banned distance from the center

point is 25HZ in Fourier space. In order to augment the data, the

images are randomly cropped into 224×224 patches as training

data, with a random horizontal flip. The model is optimized by

Adamw optimizer[27] with an initial learning rate of 0.0001, 𝛽1=0.9,
𝛽2=0.999 and decay rate of 1× 10−4 for both generator and discrim-

inator. The parameters of the generator are set as (𝜆1, 𝜆2, 𝜆3, 𝜆4) =
(1.0, 0.5, 1.0, 0.5).

Evaluation Metrics. To quantify and compare the performance

of the model, we select two objective evaluation metrics: Peak

Signal to Noise Ratio (PSNR)[18], and Structural Similarity index

(SSIM)[42]. Given a dehazed result and corresponding GT, PSNR

measures their average pixel similarity, and SSIM measures their

structural similarity. The model PSD[8] provided no PSNR and

SSIM metrics on the testing dataset. Hence, we use their trained

checkpoint and then test metrics by ourselves.

4.2 Comparisons with State-of-the-art Methods

To illustrate the effectiveness and generalization ability of our

model, we make a comparison with seven state-of-the-art models,

including DehazeNet[5], AOD-Net[22], GridDehazeNet[26], FFA-

Net[32], MSBDN-DFF[12], PSD[8] and DehazeFlow[24]. As shown

in Tab. 1, the performance of PDD-GAN and SOTA methods is

summarized on the SOTS outdoor test set, a subset of the RESIDE

dataset. Compared with others, our PDD-GAN achieves the best

performance with 35.1dB PSNR and 0.9897 SSIM.

Also, PDD-GAN is compared with SOTA methods on the quality

of restored images, as shown in Fig. 7. It can be observed that

DehazeNet and AOD-Net cannot successfully remove dense haze,

and the color is disturbed significantly by the haze (see Fig. 7(b),

(c)). Although DehazeFlow and FFA-Net can restore high quality

dehazing results, low brightness and fuzzy problem appear as well

(see Fig. 7(e), (g)). As shown in Fig. 1, we compare our model with

another prior-based method PSD. PSD just uses the physical prior to

fine-tune the dehazing process, which fails to effectively decouple

the haze and suffers from the color distortion. More importantly,

our results recover better visually, which can restore hazy images

into more natural ones with similar patterns to GT both in structure

and vision.

Table 1: Quantitative comparisons with other state-of-the-art

methods on the OTS of SOTS datasets.

Method PSNR(SOTS) SSIM(SOTS)

(TIP’16) Dehaze-Net 24.75 0.9269

(ICCV’17) AOD-Net 24.14 0.9198

(ICCV’19)GridDehazeNet 30.86 0.9819

(AAAI’20) FFA-Net 33.57 0.9840

(CVPR’20) MSBDN-DFF 33.79 0.9840

(CVPR’21) PSD 21.85 0.9436

(ACMM’21) DehazeFlow 34.24 0.9849

PDD-GAN(Ours) 35.10 0.9897

Table 2: Comparisons on SOTS for different channel config-

urations. The number of � represents the importance of

metrics.

Input PSNR��� SSIM�� FSIM�
(SOTS/NTIRE’18) (SOTS/NTIRE’18) (SOTS/NTIRE’18)

RGB 26.3452/17.4129 0.9587/0.6541 0.9882/0.8047

RGBFL 26.3135/18.0533 0.9579/0.6762 0.9876/0.8073

RGBFH 27.0237/18.5934 0.9618/0.6559 0.9888/0.7873

RGBFHL 27.3425/18.8735 0.9652/0.6781 0.98887/0.8112
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4.3 Ablation Study

Two ablation experiments are designed to better demonstrate that

our structure and vision prior-based methods have decoupling abil-

ity for image dehazing. First, we use RESIDE dataset (ITS and OTS)

with a total of 86,125 images to train our model for 20 epochs, and

we evaluate our model on SOTS and NTIRE’18 tset sets. The images

are processed into four types: RGB, RGBFL, RGBFH and RGBFHL. As

shown in Tab. 2, the PSNR, SSIM and FSIM (feature similarity)[46]

image metrics of the input RGBFHL get the highest score on both

testing sets. Compared to RGB, RGBFHL achieves higher PSNR,

SSIM and FSIM with the gains of 0.997/1.461dB, 0.0065/0.024 and

0.0006/0.0065 respectively and RGBFH improves the metrics as well.

Although RGBFL gets lower score on SOTS, the combination of FL
and FH performs better.

The second experiment follows two control groups: (1) with

prior loss (L𝐺𝑟 ), (2) without prior loss (L′ as in Formula. 9). Our

model is trained on training set (OTS) with RGBFHL inputs and

evaluated on SOTS, as shown in Tab. 3. It can be seen that adding

a prior loss to our model can improve the final dehazing results

and reconstruction performance, and the PSNR increases by 2.0db,

SSIM increases by 0.031 and FSIM escalates by 0.009.

L′=𝜆1L
𝐿1 + 𝜆2L

𝑃𝑙 + 𝜆4L
𝐴𝑙 (9)

Finally, the experiments show that the RGBFHL input and prior

loss can indeed improve the dehazing performance and achieve the

decoupling ability.

Table 3: Ablation study results. By using prior loss, our

method obtains significant improvements.

Loss Function PSNR↑ SSIM↑ FSIM↑

L′ 33.10 0.9587 0.9882

L𝐺𝑟 35.10 0.9897 0.9972

5 CONCLUSION

In this paper, we have proposed a prior-based GAN network based

on PeleeNet with decoupling ability for single image dehazing.

Besides, prior-based methods are put forward, including adding the

image processed by a band-stop filter as the fourth channel into the

network and designing a novel prior loss function in order to offer

compensation information to our network. Compared with other

state-of-the-artmethods, ourmethod achieves the best performance,

which can generate high quality images. In addition, other extensive

experiments have demonstrated that FH and FL images represent

edge and internal information, respectively. Owing to the frequency

domain and HSV information, the network can better extract the

structural and visual features of the image.
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