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ABSTRACT
Accurate parcel segmentation of remote sensing images plays an
important role in ensuring various downstream tasks. Traditionally,
parcel segmentation is based on supervised learning using precise
parcel-level ground truth information, which is difficult to obtain.
In this paper, we propose an end-to-end unsupervised Graph Con-
volutional Network (GCN)-based framework for superpixel-driven
parcel segmentation of remote sensing images. The key compo-
nent is a novel graph-based superpixel aggregation model, which
effectively learns superpixels’ latent affinities and better aggregates
similar ones in spatial and spectral spaces. We construct a multi-
temporal multi-location testing dataset using Sentinel-2 images and
the ground truth annotations in four different regions. Extensive
experiments are conducted to demonstrate the efficacy and robust-
ness of our proposed model. The best performance is achieved by
our model compared with the competing methods.
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1 INTRODUCTION
Parcel segmentation is a building block of many environmental
remote sensing applications, such as crop classification and growth
monitoring [12, 20, 27], land use change detection [26], etc. These
applications inform governance and business decisions related to
food security, climate change, and environmental protection. The
vast majority of existing parcel segmentation tasks are based on
supervised learning methods, which require precise parcel-level
ground truth annotation in the target area [2, 8, 9]. This requirement
has almost become indispensable in the era of deep learning. While
satellite images provide a wealth of spatial, temporal and spectral
information of the earth surface, annotating parcel-level reference
is time-consuming and labor-intensive. As a result, those supervised
learning-based algorithms suffer from unsatisfactory generalization
in other regions. Some existing datasets are constructed by per-pixel
classification [28], which inherently have inevitable salt-and-pepper
noise, thus hindering their usability.

Unsupervised learning-based segmentation methods, on the
other hand, do not need expensive ground truth information during
the learning process. These methods purely rely on image content
to accomplish a segmentation task instead, leading to much bet-
ter generalization capacity [3, 5]. Specifically, superpixel is widely
used in remote sensing segmentation tasks, which is a group of
pixels that share similar properties [22]. A superpixel-level result
can facilitate image processing and significantly eliminate the salt-
and-pepper noise. With the vigorous development of deep learning
nowadays, a superpixel output is commonly used as an intermedi-
ate result or guidance to achieve better performance in supervised
learning-based segmentation tasks in remote sensing [16, 17, 19].
However, their proposed methods still require ground truth training
data.

https://doi.org/10.1145/3487553.3524716
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Figure 1: The proposed framework.

Recently, Graph Convolutional Networks (GCNs) [11] have em-
powered numerous applications in the Web and social good, com-
puter vision, and natural language processing [31]. Among various
graph problems, graph partitioning aims to divide the vertex set
under constraints, such that the edge cut across the partitions is
minimized [4]. Since a superpixel can be transformed into a node
in a graph, it is possible to leverage GCNs to learn the latent rela-
tionship among superpixels and partition them into a few larger
segments without ground truth. These larger segments, which are
the aggregations of superpixels, are visually the segmentation result
of an image.

In this work, we propose an unsupervised GCN-based framework
of superpixel-driven parcel segmentation. We use Sentinel-2 data
as our image source because of their high spatial resolution (10m)
and high temporal resolution (5-day revisiting interval) as well as
free accessibility [7]. Our key contributions are listed below:

• To the best of our knowledge, this is the first end-to-end
unsupervised GCN-based framework for superpixel-driven
parcel segmentation of remote sensing images. It incorpo-
rates the powerful graph-learning capacity of GCNs and the
great generalization of superpixels.

• In our framework, we designGUSA (Graph-basedUnsupervised
Superpixel-Aggregation) by modifying the network struc-
ture and loss function of a GCN-based model, dedicated to
effectively learning the latent affinity relationship among
superpixels and better aggregating similar ones in spatial
and spectral spaces.

• We conduct extensive experiments on our multi-temporal
multi-location Sentinel-2 image dataset to demonstrate the
efficacy, robustness, and generalization of GUSA. In partic-
ular, GUSA achieves best performance compared with the
competing methods. The newly defined hyper-parameters
in GUSA are also validated by ablation studies.

The rest of this paper is organized as follows. Related studies
are reviewed in Sec. 2. We elaborate on the proposed method in

Sec. 3. The experiment setup and results are presented in Sec. 4. We
conclude this paper in Sec. 5.

2 RELATEDWORK
Conventional unsupervised learning algorithms for superpixel ag-
gregation are mainly based on the idea of Normalized Cut [21] on a
graph, which calculates the cut cost as a fraction of all nodes’ edge
connections, and further based on a bipartite graph [15, 25, 29].
However, those traditional methods still suffer from heavy compu-
tational complexity when the number of superpixels increases [30],
which are not quite feasible for large-scale model deployments.

Many deep learning-based approaches incorporate superpixels
in their proposed frameworks [6, 16, 17, 19, 23]. An affinity loss is
designed to improve the superpixel segmentation [23], which is also
adopted in remote sensing tasks [17]. Nevertheless, the objectives
of these usages are to either enhance the generation of superpixel
itself or further boost the entire supervised learning tasks. Recently,
some superpixel-guided unsupervised frameworks are proposed for
image segmentation such as Unsupervised Image Segmentation by
Backpropagation (UISB) [10] and Deep Image Clustering (DIC) [32].
They utilize Convolutional Neural Networks (CNNs) to learn the
spectral features and calculate the iterative refinement loss guided
by a superpixel segmentation result, but they do not well emphasize
the subtle spatial affinity among superpixels.

To solve the graph partitioning problem, different from super-
vised GCN-based learning methods [31], an unsupervised GCN-
based graph partitioning framework Generalizable Approximate
Graph (GAP) is presented in [18], nonetheless, its usability for
image segmentation tasks is not well studied.

3 METHODOLOGY
3.1 Framework Overview
Fig. 1 briefly illustrates our proposed framework. A large remote
sensing image input is first cropped into smaller patches for efficient
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Figure 2: GUSA architecture.

processing. Superpixel generation is next performed on each patch.
An image patch and its superpixel result together construct a super-
pixel graph that is fed into the Graph-Based Superpixel Aggregation
Module, where the superpixel graph is well learned and partitioned
by our designed GUSA. The partition result is equivalent to the
superpixel aggregation of the image patch. In the Patch Mosaic
Module, every patch is mosaicked back into the whole image size.
The next artificial border removal procedure is able to eliminate
fake resultant boundaries at the patch mosaicking borders. The pro-
cessed output is the final parcel segmentation result of the entire
input image. We will detail each step in the following sub-sections.

3.2 Patch Generation and Superpixel
Generation

As a single Sentinel-2 image has 10,980×10,980 pixels, it is rare to
directly train it on a deep learning model due to hardware limitation
and expensive computational overhead. Instead, we crop a whole
image into smaller patches. In our case using Sentinel-2 images, a
cropped patch has a fixed size of height and width with 4 channels
(blue, green, red, and near-infrared bands (BGRN)). Each patch
is then processed individually before the patch mosaic module.
Regarding superpixel generation, we adopt the Simple Non-Iterative
Clustering (SNIC) algorithm because of its overall satisfaction in
terms of visual quality and compactness [1].

3.3 Graph-Based Superpixel Aggregation
Module

In this module, a superpixel graph is first constructed by the origi-
nal image patch and its superpixel result, where each node of the
graph represents a superpixel. The mean BGRN values of all pixels
inside a superpixel contribute to its 4-dimensional node features.
Recently, GAP is proposed to partition a graph in an unsupervised
manner [18]. It accepts three inputs (node degree, node features,
and adjacency matrix), and has two modules for graph embedding
and partitioning, respectively. A trainable multi-task loss function
is designed for minimizing a continuous relaxation format of nor-
malized cut and a new balanced cut without ground truth. However,
it is not quite suitable for superpixel graph partitioning due to the
following issues:

(1) The GCN in the graph embeddingmodule of GAP suffers from
the vanishing gradient problem, limiting itself to shallow models.
Another limitation is that the graph edges in GCN are fixed so

that the relationship of a superpixel node and its neighbors are not
dynamically learned during training.

(2) The graph partitioning module of GAP comprises fully con-
nected layers, which is not the ideal structure to maintain spatial
information when reducing the length of channels.

(3) The adjacency matrix of superpixel nodes should include
both spatial and spectral affinities.

Therefore, we design GUSA, by modifying the architecture and
the loss function of the GAP model to effectively consider the
specificity of a superpixel graph.

Modification to the architecture.We leverage DeepGCN [14]
inside the GUSA to overcome the issues listed above as shown in
Fig. 2. The DeepGCN exploits the ResGCN backbone, which adds
residual connections between the input and output layers, to allevi-
ate the vanishing gradient problem. By using a Dilated K-nearest-
neighbors (KNN) function, the DeepGCN can dynamically change
neighbors in the GCN to mitigate the over-smoothing issue and
learn better graph representations. This is an advantage over the
GCN in which only vertex features are updated at each iteration.
The fusion block fuses the global features as well as local features
from the ResGCN backbone. Suppose that a superpixel graph has
n nodes, and the expected number of aggregated partitions after
GUSA is given as д. The modified MLP prediction block comprises
several 1×1 convolutional layers to maintain the spatial information
and assign n nodes to д partitions. Consequently, the graph parti-
tioning module of GAP is not necessary, since DeepGCN is regarded
as an improved holistic combination of the graph embedding and
partitioning modules of GAP.

Modification to the loss function. As shown in Fig. 2, we
design the new adjacency matrix to consider both spatial and spec-
tral affinities, and define two new hyper-parameters to adjust the
dominant terms in the loss function. We modify the original loss
function in GAP as follows:

L =

normalized cut loss︷                                    ︸︸                                    ︷∑
reduce-sum

(Y ⊘ Γ)(1 − Y )T ⊙ Aw +σ

balanced cut loss︷                     ︸︸                     ︷∑
reduce-sum

(1TY −
n

д
)2,

(1)
where σ > 0 denotes one new hyper-parameter to investigate
the importance of the balanced cut loss, and Aw = (Awij )n×n rep-
resents the weighted adjacency matrix. All other terms have the
same definitions as the original version in GAP [18]. Y ∈ Rnxд

is a probability matrix that represents the probability of a node
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Figure 3: Physical locations and terrain types of counties in our dataset and example of land cover visualization in four quar-
ters.

belonging to a partition. Γ = YTD calculates the expected value
of node degrees on each partition. ⊘ means element-wise division,
and ⊙ means element-wise multiplication. The matrix element Awij
of Aw is defined as:

Awij = δci j + (1 − δ )e−βdi j , (2)

where ci j is 1 if superpixel nodes i and j are spatially adjacent,
otherwise 0; e−βdi j represents the weighted similarity in spectral
space; di j is the Euclidean distance between the average BGRN
spectral values of two nodes i and j , and β > 0 is a weight to control
the significance of di j ; δ ∈ [0, 1] denotes the other new hyper-
parameter to adjust the balance of spatial and spectral affinities.

When the training process is completed, the output n × д matrix
indicates every superpixel’s partition class. Visually, the adjacent su-
perpixels with the same partition label appear aggregated together
(i.e. the “superpixel aggregation” result in Fig. 1).

3.4 Patch Mosaic Module
Once all patches are processed, they are fed into the Patch Mo-
saic Module and stitched back together into the input image size.
However, due to the individual patch-based result, artificial bor-
ders are present on the patch edges, leading to fake segmentation
boundaries there. The yellow lines in the Patch Mosaic Module
in Fig. 1 illustrate this effect. Therefore, we design a procedure of
artificial border removal to appropriately eliminate those artifacts
and merge the similar segments at a shared patch border across the
adjacent patches. The full lambda schedule algorithm [13] is utilized
to calculate the merging cost of two segments Si and Sj , which is
defined as:

C(Si , Sj ) =

ai ·aj
ai+aj d

2
SiSj

len(∂(Si , Sj ))
< λ (3)

where ai denotes the area of Si (i.e. the number of pixels of Si );dSiSj
is the spectral Euclidean distance between Si and Sj ; len(∂(Si , Sj ))
refers to the length of the shared border of the segments Si and Sj .
If the merging cost C(Si , Sj ) is less than the pre-defined threshold
λ, Si and Sj are merged and their shared border is removed. If the

segments have a large common border or small Euclidean distance
value, they have a higher chance to merge. To facilitate this process,
the patches are first merged horizontally to remove vertical artifi-
cial borders, and a vertical merging is then processed to remove
horizontal ones.

4 EXPERIMENTS
4.1 Dataset, Evaluation Metric and

Implementation Details
Our testing dataset is built using Sentinel-2 images over four county
regions which have parcel-level ground truth labels. The four coun-
ties are located in the areas of major grain production in China and
cover a total area of ∼4600 km2, including Fuyu, Yuanyang, Caox-
ian, and Xiangzhou. The left figure of Fig. 3 shows their geographic
locations. Since the ground truth reference was annotated in 2019,
we acquire and decloud all valid images in 2019 from Sentinel-2
data, excluding the defective/corrupted ones or those that have
dense clouds. Every image is cropped into patches with the size of
512×512. There are total ∼9,800 patches to cover the four testing
area in 2019. The right figure of Fig. 3 presents an image patch
example of land cover variations at Fuyu county throughout four
quarters.

We adopt the commonly used Probabilistic Rand Index (PRI)
[24] as our segmentation evaluation metric, which quantifies the
partition similarity between the segmentation result and the ground
truth, ranging from 0 to 1. A higher PRI value means a better
segmentation result. We calculate the average PRI value over multi-
temporal images to evaluate the performance of a model.

We modify the SNIC implementation to support 4-channel image
patch input. In the DeepGCN model of GUSA, we adopt 28 GCN
layers. The maximum number of neighbors of a node is set to 8.
We assign 30 to the weight β of spectral Euclidean distance. The
learning rate, the dropout rate, and the decay rate are set to 0.001,
0.3, and 0.5, respectively. The merging cost λ is set to 30,000. The
newly defined hyper-parameters will be evaluated in Sec. 4.3. All
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(a) Original image (b) Ground truth (c) DIC [32]

(d) UISB [10] (e) GAP [18] (f) GUSA (ours)

Figure 4: Visualized results of our proposed GUSA and competing methods on an image patch example in Yuanyang County
in 2019.

our codes are implemented in Python 3.9.4 and PyTorch 1.9.0, and
sped up with 2 NVIDIA Tesla V100 32GB GPUs.

4.2 Comparison of Different Methods
To perform a timely and fair comparison, we include the recent DIC
[32], UISB [10], and GAP [18] as the competing methods, since they
are unsupervised, deep learning-based, and superpixel-involved
models. Every model uses the same superpixel generation input
and the number of partitions д. Table 1 lists the average PRI values
of parcel segmentation results on our dataset using the four models.
As we can see, while graph-based models have better performance,
GUSA achieves the best performance compared with other models
across all counties. For each county, Fuyu has the highest PRI values
thanks to its simpler parcel layout and lower urban density. On the
contrary, the hilly topography in Xiangzhou indeed impacts on the
segmentation results of all four models due to the more irregular
parcel shapes and distribution. Yuanyang and Caoxian counties are
located very close to each other, so their terrains and parcel layouts
are comparable, leading to similar PRI results.

Table 1: Performance (PRI) comparison of our proposed
GUSA with competing methods using our testing dataset.

Method Fuyu Yuanyang Caoxian Xiangzhou
DIC [32] 0.7071 0.6381 0.6238 0.6013
UISB [10] 0.7784 0.7522 0.7344 0.6890
GAP [18] 0.8509 0.8056 0.8022 0.7560

GUSA (ours) 0.8826 0.8439 0.8415 0.8137

Fig. 4 provides visualized results of an image patch example in
Yuanyang county. Particularly, both DIC and UISB maintain the
boundaries between urban and cropland areas, but DIC undergoes
the effect of rapid convergence to over-aggregate cropland parcels,
and UISB have lots of tiny segments. Since the spatial affinity among
superpixels is not learned well in these models, the cropland parcel
boundaries are obviously ignored. For graph-based models, GAP
obtains clearer parcel boundaries but is unable to separate the
croplands from the urban areas well. Many incorrect segments can
be thus found at the actual urban boundaries. GUSA achieves better
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Table 2: Performance (PRI) of different hyper-parameter set-
tings in the loss function of GUSA in Yuanyang county.

σ (in Eq. 1) δ=0 δ=0.3 δ=0.7 δ=1
0.1 0.6817 0.7608 0.8121 0.7872
1 0.8203 0.8328 0.8439 0.8374
10 0.8100 0.8125 0.8138 0.8126

Table 3: Performance of GUSA in different quarters and
counties.

Quarter Fuyu Yuanyang Caoxian Xiangzhou
First 0.8847 0.8472 0.8448 0.8062

Second 0.8816 0.8497 0.8435 0.8104
Third 0.8803 0.8415 0.8406 0.8225
Fourth 0.8837 0.8373 0.8371 0.8157

parcel segmentation results as well as the clear boundaries of urban
and cropland areas. We believe that the reasons are threefold. First,
DeepGCN learns the graph embedding better than the conventional
GCN by mitigating the gradient vanishing problem. Second, the
fully connected layers inside GAP are not desirable to preserve
superpixels’ spatial information. Third, we improve the adjacency
matrix to consider superpixels’ affinities in spatial and spectral
spaces.

4.3 Ablation Studies
Analysis of hyper-parameters in the GUSA loss function. For
efficient ablation experiments, we fix one representative county
Yuanyang because it has a relatively balanced percentage of urban
and agricultural areas, and the model performance in this county
is intermediate. We set different orders of magnitude for σ and
create intervals for δ . Table 2 shows the average PRI results of
GUSA under various combinations of the parameter values. The
best result is achieved when σ and δ are 1 and 0.7, respectively.
The settings of σ and δ indicate that (i) the normalized cut loss
and balanced cut loss synergistically contribute to the learning
process; (ii) significantly decreasing the dominance of balance cut
loss (σ=0.1) notably degrades the performance; (iii) in an adjacency
matrix, similarity in the spectral space is valuable and even more
dominant but the spatial superpixel adjacency is not ignored; (iv)
purely relying on similarity in either spectral space (δ=0) or spatial
space (δ=1) is not ideal.
Quarters in different counties. As shown in the right figure of
Fig. 3, images even in the same region can vary a lot in different
seasons due to environmental change and plant growth. We eval-
uate the performance of GUSA in four individual quarters on our
dataset. The PRI values in Table 3 demonstrate the overall robust-
ness of GUSA across the different seasons. We also find that the
performance is most stable in Fuyu but fluctuates in Xiangzhou.
We believe that one of the reasons is the topographic simplicity and
low urbanization in Fuyu. Another observation is that Fuyu has
relatively better performance in cold seasons, Yuanyang and Caox-
ian enjoy outstanding results in the first half-year, and Xiangzhou
achieves the best PRI values in the third quarter. These differences

are potentially caused by intra-annual climate and vegetation vari-
ability.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose the first end-to-end unsupervised GCN-
based framework for superpixel-driven parcel segmentation of re-
mote sensing images. A dedicated model GUSA is designed to ef-
fectively learn the latent affinity among superpixels and better
aggregate similar ones in spatial and spectral spaces. Extensive
experiments are conducted on our multi-temporal multi-location
Sentinel-2 image dataset to demonstrate the outstanding perfor-
mance and robustness of our proposed framework. The newly de-
fined hyper-parameters in GUSA are also validated using ablation
studies. We are currently annotating more regions to expand our
dataset size. We will also investigate the effectiveness of some edge-
enhanced approaches to improve the performance of our proposed
method.
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